
Time and Space Efficiency
of Codes and Proofs

Joshua Cook’s Thesis Defense

What did I actually do?

More Efficient Verifiers for Interactive Proofs and PCPs

More Verifier Efficient Interactive Protocols For Bounded Space (FSTTCS 2022)

Efficient Interactive Proofs for Non-Deterministic Bounded Space (Random 2023) with Ron Rothblum

Tighter MA/1 Circuit Lower Bounds From Verifier Efficient PCPs for PSPACE (RANDOM 2023) with Dana Moshkovitz

Efficiency of Encoders and Decoders for Error Correcting Codes

Explicit Time and Space Efficient Encoders Exist Only With Random Access (CCC 2024) with Dana Moshkovitz

Time and Space Efficient Deterministic Decoders. 2024 with Dana Moshkovitz

Time and Space Efficient Deterministic List Decoding. 2025 with Dana Moshkovitz

Time-Space vs Cumulative Memory in the Streaming Model. (Manuscript) with John Kallaugher and Niels Kornerup

Focus for proposal Focus for Defense

The Decoding Problem

What is an Error Correcting code?

Definition:

Function C: Σk→Σn such that for x ≠ y, we have

Pri[C(x)i≠C(y)i] ≥ 𝝳*.

Relative distance 𝝳*, rate r = k/n. Good if 𝝳*, r = 𝝮(1) and |Σ| = O(1).

The correcting radius is 𝝳 = 𝝳*/2.

Many, many applications,

some of which are in the small space regime.

How We Use Error Correcting Codes

x C(x) w C(x’) x'

Encoder Noise

Adversary

Decoder
Corruption

If corruption ≤ 𝝳, then x’ = x

𝝳

𝝳

What is decoding?

Given w close to C(x),
output x.

C(x)
w

Promised that only
one codeword is in

radius 𝝳.

Think of w as
C(x) with

noise.

If w is within 𝝳 of
C(x), we decode x.

Want to
know x.

Examples of Error Correcting Codes

Reed-Solomon codes: codewords univariate low degree polynomials.

Example: for a = (a1,a2,a3), let fa(x) = a1 + a2x + a3x
2 . Output truth table of fa.

Reed-Muller codes: codewords are multivariate low degree polynomials.

Example, let fa(x,y) = a1 + a2x + a3x
2 + a4xy + a5y + a6y

2. Output fa.

Expander codes: codewords satisfy constraints given by an expander graph.

Many more: Turbo codes, polar codes, tensor codes, hamming code, etc.

Efficient Codes

Want efficient encoding and decoding.

Linear time?

✓ Spielman

Log depth, Linear sized Circuits?

✓ Spielman

Linear time, log space?

Want explicit good codes with deterministic, uniform encoders and decoders.

What is a log space decoder?

Input is read only. Output is write only. Have only O(log(n)) working space.

In

Working

Can’t Change

Decoder

Decoder can
only query!

Out

written

Can’t Read

Decoder can
only write!

Small

Why is Efficient Decoding Hard?

Decoding in Near Linear Time and Small Space

Standard approaches to linear time decoding often require storing partially
corrected codeword in memory and making iterative corrections.

1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 001 1

What if we did
not remember
corrections?

I look
unsatisfied!

Local Decoding and Randomized Decoder

Can we correct a single symbol only looking at a small number of symbols?

Randomly? Yes.

For Reed Muller, take a random line through a point.

Reed-Muller
Green: Correct
Red: Corrupt

If it rarely hits corruption, local
correction succeeds. Correct here

This line
fails

This line worksDeterministically? No.

Always checks the same few
symbols, adversary corrupts those.

Locally Correctable Codes (LCC)

Definition:
An LCC is a code C: Σk→Σn with a randomized algorithm D such that:

For any w ∈ Σn, x ∈ Σk where Pri[C(x)i ≠ wi] ≤ 𝝳’ and any i ∈ [n] we have

Pr[D(w, i) ≠ C(x)i] ≤ ⅓

D is q query if it only makes q queries to w. 𝝳’ is called the correcting radius.

Most codes we consider are systematic, so local correctors give decoders.

Randomized Decoder Continued

Reed-Muller codes are locally correctable!

By repeating O(log(n)) times, the error probability drops below 1/n.

So it is unlikely any symbol is decoded incorrectly.

This gives us a time and space efficient randomized decoder.

Local correction cannot be deterministic (and always correct)!

Non Adaptive, Deterministic Decoders Fail

Gronemeier proved that a non-adaptive decoder cannot do this.

Non-adaptive means where the decoder reads and when it writes are independent
of the input.

Idea: for space S, wait for an interval where the decoder outputs S+1 symbols and
only reads o(n) input symbols.

r w r r r r r r w r r w r w r w r r ww r r r w r r w r w r w r r ww r r r r r r w r r r r r w r r ww r r r w

Always reads
same bit

r r r r r r

Memory
Remember

this one

w w w w w

and this one

w

But not
this one!

First Result: Efficient (Non-Uniform) Deterministic Decoders

Theorem:
Good, typical* q query LCCs have non-uniform, deterministic
decoders running in space O(q log(n)1.5 / √log(q)) and time

O(n log(n) nO(√log(q) / √log(n))).

*(typical means systematic, non-adaptive, and with perfect completeness).

For q = no(1): space is no(1) and time n1+o(1).

A prior result by Gronemeier proved non-adaptive decoders for good codes
required time T and space S such that ST = 𝛀(n2).

A flawed approach

Find a (single) q query f such that

Pri,j[C(x)i ≠ fj(w)i] ≤ 𝜂 Pri[C(x)i ≠ wi]

f reduces the fraction of corruptions by 𝜂.

Good Corruption

f

f

f

f

Correct here

Input

Codeword

w

How good can a single, deterministic f be?

If f makes q queries, and we can corrupt 𝝳 fraction of symbols.

f(w)

w𝝳

q

𝝳/q f(w)

For deterministic f, only get 𝜂 = 1/q

Why doesn’t it work?

Deterministic, q query f only
reduces 𝝳 corruptions to 𝝳/q.

Good Corruption

Inputqueries
d ≥ 𝛀(n)

q
d/q

q2

d/q2

q3

d/q3

Corruption

q4≥𝛀(d)
d/q4

 < 1

To get zero errors, we would
need 𝝳n queries (per symbol)!

This gives a total time of 𝝳n2.

Our Efficient Decoder

Fix: More than one function
What about m different q query functions f1, …, fm?

Now the O(𝝳/q) failures are distributed among m functions.

Less than O(𝝳 / m) on average.

Don’t have to pay for m in the recursion, so can make m ≫ q!

Definition:

f1, …, fm is a below 𝝳, factor 𝜂 improving set if for any w and C(x) with
Pri[C(x)i ≠ wi] ≤ 𝝳 we have

Pri,j[C(x)i ≠ fj(w)i] ≤ 𝜂 Pri[C(x)i ≠ wi]

Example
Try all f1, .., fm.

Good Corruption

f3

f1

f5

f1

Keep going until error is zero.

Still recursive, but fewer
levels if q << m.

f1f2

f2

queries

q

q2

q3

q4<<n

Corruption

d ≥ 𝛀(n)

d/m

d/m2

d/m3

d/m4<1

Selecting fj from Improving Set

Ideally for every i compare C(x)i to fj(w)i to see how good fj is.

Don’t have access to C(x), but

In expectation a random fk(w) is close to C(x).

Choose the fj such that fj(w) agrees with the most fk(w) at the most indexes.

Runtime of Algorithm

Selecting a function takes O(q m2 n) queries to the level before it.

A query to level L takes qL queries.

Final decoder only requires space q L and time

O(n m2qL).

As long as 𝜂 ≪1/q, qL will be small (if 𝜂 = q-a then qL = n1/a).

Can We Find such an Improving Set?

Yes, (for typical LCC).

For any q query LCC and 𝜂, there is a q query improving set with size

m = O(log(n)2/𝜂).

If q = no(1), then setting 𝜂 appropriately gives space no(1) time:

n1+o(1).

Uniform Decoding for Reed-Muller

Second Result: Efficient Uniform Decoders

Theorem:
There is a good code with a uniform, deterministic decoder running in
space no(1) and time n1+o(1).

The code is based on Lifted Reed-Solomon codes.

Also applies to the special case of Reed-Muller codes.

Samplers

A

Family of subsets of N, 𝒮.

We say 𝒮 is a sampler if:

For all sets A (let 𝜇 = |A|/|N|).

The probability S ∈ 𝒮
oversamples A is low.

Definition: We say 𝒮 = (S1,S2,...Sk) where each Si ⊆ N is a sampler for
N if for some accuracy error 𝜀 > 0 and strong confidence error 𝛿, for all A ⊆
N, and 𝜇 = |A|/|N| we have

Pri[|Si∩A|/|Si| ≥ 𝜇 + 𝜀] ≤ 𝛿𝜇.

Curve Samplers

Need samplers with special structure to allow decoding.

● Lines (Line samplers)
● Subspaces (Space Samplers).
● Curves (Curve Samplers).

Prior curve samplers by Ta-Shma and Umans (and later by Guo) exist, but they:

● Had too many samples, more than n4, while we need n1+o(1).
● Only proved a weaker notion of confidence error.

Line Samplers
A sampler whose samples are lines.

Most points (even corrupted
points), most lines through that

point don’t oversample A.

Some points still won’t be
corrected, but few of these

How good are line samplers?

For q queries, the probability they oversample is about 𝜂 ≅ 1/q.

Comes from pairwise independence.

NOT GOOD ENOUGH! Need 𝜂 << 1/q.

This is the best lines (or subspaces) can do!

Solutions?

Use curves (works, but gives much worse rate).

Use several lines through a point (extends to lifted Reed-Solomon codes).

Third Result: New Curve Samplers

Theorem:
For any integers b and d such that b|d and b > 1, and any 𝜀 > 0 there is
a degree b-curve sampler for 𝔽d (where 𝔽 is the field of order p) of size
|𝔽|d+poly(b) with accuracy error 𝜀 and strong confidence error:

2b(2b/𝜀√|𝔽|)b

Number of samples are close to n = |𝔽|d.

Prior curve samplers had many more samples, and they did not prove strong
confidence error.

Sampler
Construction
First sample a subspace.

Sub-sample with curves.

Since subspace is small, use all low degree
curves as a sampler.

Or a sample a few lines through a point in
that subspace.

Choose one curve.

Choose a few lines.

Do low degree correction on that curve.

Correct on each line and take a majority.

Epsilon biased sets in extension field. Gives a line
sampler, which is a subspace sampler over original field.

More Details

Extension Fields

Finite fields 𝔽 with prime order p is just ℤp.

The extension field, 𝔽pk, has elements of the form

f(x) = ∑i aiy
i mod p(y)

Where each ai ∈ 𝔽, and p(y) is irreducible, degree k.

Formal polynomial. Don’t view as a function, the polynomial IS the element.

Lines Through Extension Fields

Line through 𝔽’d is a function of the form, for some u, v ∈ 𝔽’d:

L(x) = u + x v

If 𝔽’ is an extension field of 𝔽, then for x ∈ 𝔽:

 L(x) = u + x v

= ∑i uiy
i mod p(y) + (∑i xiy

i mod p(y))(∑i viy
i mod p(y))

 = ∑i uiy
i mod p(y) + ∑i,j xivjy

i+j mod p(y)

None of the xi are multiplied by each other! Resulting coefficients are linear
functions of the coefficients of x!

Line Samplers

So subspace samplers come from line samplers.

Line samplers through 𝜀-biased sets.

𝜀-biased sets (Jalan, Moshkovitz using techniques from Ta-Shma).

Prior curve samplers use extension fields (Ta-Shma and Umans).

Uses curves, not lines over extension field.

Doesn’t let us subsample lines (needed for good rate).

Not as randomness efficient (requires n4 samples).

Better Rate with Fewer Queries.

Reed-Muller gives bad rate for few queries.

Use a closely related code called Lifted Reed-Solomon.

Low degree only when restricted to lines.

For high degree and low characteristic, more general than Reed-Muller.

Lifted Reed-Solomon with high rate (and few queries) has low distance.

Use similar distance amplification technique as Kopparty, Saraf, and Yekhanin.

List Decoding

𝝳

𝝳

List Decoding:
decoding beyond half

w is not within 𝝳 of a codeword.

But clearly is from x.

C(y)

C(x)

w

v

v is within 𝝳 of a C(y),

But really came from C(x).

V is only close to two
codewords.

Let it output both.

List Decoding

Definition:
A list decoding algorithm for a code C: Σk→Σn is an algorithm D:Σn→
(Σk)L such that for any w ∈ Σn, x ∈ Σk where Pri[C(x)i = wi] ≥ 𝛾 for some
j ∈ [L] we have

D(w)j = x.

D outputs a list of L codewords.

Any codeword, C(x), that agrees with w on 𝛾 fraction of symbols is in the list.

Does List Decoding Help?

Yes for codes with large distance (𝛿 = 1-𝛼 close to 1): the Johnson bound.

All words only have ~ 1/𝛾 codewords that agree on 𝛾 fraction of points.

C(x)

C(y)

C(z)

w
𝛾 𝛾 𝛾

C(w) 𝛼𝛼𝛼

Can’t agree
with C(x) more!

If 𝛼 is small, C(w) can’t agree with
w often.

Efficient Uniform List Decoders

Theorem:
For any constants 𝜏 > 0 and 𝛾 > 0, there exists an infinite family of
uniform asymptotically good codes that can be list decoded from 1 - 𝛾
fraction of errors in time n1+𝜏 and space n𝜏.

These are Reed-Muller codes.

Great! Use Local List Decoding!

A

A

A

A

A

Which one “improves” the word?

All of them!

But they come from
“different” codewords.

List Recovery

Instead of receiving a single word, receive several candidate symbols per index.

Output all codewords who have many symbols in those lists.

 a d h i m 9 p r w z B E H M Q S 3 Y

a
b
c
d

d
e

f
g
h

i
j
k
l

m n
o
p
q

r
s
t

u
v
w
x

y
z

A
B

C
D
E
F

G
H
I

K
L
M
N

O
P
Q
R

S

T
U
V
W

X
Y
Z

d e f k 8 n o t x y 4 E G K O S U Z

a 1 g j m n q s u 2 A C I N P S 6 X

Goal: Make a Zero
Error List Recovery
Instance

Can’t have many
codewords all in short lists.

Need to separate list into
specific codewords.

Use a point all codewords
differ to decode.

1

10

Decode with lines through
that point.

p

q

Problem: Choosing an Improver

Before, chose an improver who agreed with other improvers on many places.

Generally allow list decoders to output codewords not close to the received word.

These can confuse the selection process.

f1(w)

Good Improver!
Perfect even.

a
b
c

d All other functions
output d, not a,b,c.

f2(w) d

Worse, but
looks better!

Can stop us from
improving beyond

some point!

Two Kinds of Errors

In Codeword:

Symbols in a nearby codeword,
missing from lists.

These will be removed with local
corrections because of sampling.

Out of Codeword:

Symbols in lists that are not in nearby
codewords.

Can cause false negatives.

Sampling can handle these as well…

AFTER the out of codeword errors
are small.

Need these to be rare.

Local Testing

We need local corrections that only succeed if input is close to a codeword.

Local testing in the list decoding (high error) setting.

Local testing in the low randomness (few samples) setting.

List decoding setting: [RS97; AS97; MR06; BDLN17; MZ23; Har+24]

Low randomness setting: [BSVW03; MR06]

Moshkovitz and Raz give a low degree test that is both.

Randomness Efficient
Plane vs Point Test
Choose a completely random
point x ∈ 𝔽d.

x

Choose two directions from a
smaller u, v ∈ ℍd. (ℍ ⊊ 𝔽)

u

v

Check if plane through point in
directions is low degree.

Local List Testing (Informal)

Definition:

For some small 𝜂 > 0, for all 𝛼 > 0, for 𝛼’ = 𝛼 - 𝜂 we have that:

For any assignments of the subspaces to low degree polynomials, gS

The probability that a random gS:

agrees with the received word at a random location and

Does not agree with the closest codewords (those within (1-𝛼’))

is at most 𝛼.

This implies that local correctors have few out-of-codeword errors.

Local Testing (Informal)

Theorem:

For some small 𝜂 > 0, for all 𝛼, 𝛾, 𝜖 > 0 such that 𝛾(1-𝛼) > 4𝜂. Then there is
a family of functions f such that for any word w:

Completeness: If y is a codeword that agrees with w on 𝛾 + 𝜖 of symbols,
then

Pr[yi ⊄ f(w)i] < 𝜂/𝜖2

Soundness: If Q is the multi-string of codewords that agree with w on 𝛾(1-
𝛼) - 5𝜂 fraction of symbols, then

Pr[f(w)i ⊄ Qi] < 1 - 𝛼

So we just decode using these planes?

Subspaces (including planes) are not good enough samplers for our decoder…

But only need local testing in first round!

After out of codeword errors are small, sampling arguments are sufficient.

Can use prior sets of lines to correct from there.

How do we decide what a good function is?

For the first function (the planes with local testing) we don’t! Brute force, try all!

After that, most correctors output the exact right list most of the time.

Use the same argument as the unique decoding case.

Those Other Results

Tighter MA/1 Circuit Lower Bounds From Verifier Efficient PCPs for PSPACE

Tighter circuit lower bounds for MA/1 (prior result by Santhanam).

MA/1 is a type of interactive proof where the prover gets a single message.

MATIME[na+o(1)] ⊈ SIZE[na] (for some a > 1)

Tighter equivalence between MIP = NEXP (prior by, Babai, Fortnow and Lund).

MIP is a type of interactive proof where there are two provers.

NE has two prover, one round proofs with time Õ(n) verifiers.

Time-Space vs Cumulative Memory in the Streaming Model.
with John Kallaugher and Niels Kornerupwith John Kallaugher and Niels Kornerup

Space Lower Bounds for Learning from extractors.

Problem: Given seeded extractor Ext which takes as input an n bit source, and a
length n source a, output a single bit of a, ai, from samples of the form Ext(a, s) for
uniformly random seeds s.

Result: Any algorithm that outputs ai with high probability must either use space 𝛺
(n) or read 2𝛺(n) samples.

Prior results by Raz, Moshkovitz, Garg, Tal (and others)

Only for extractors that output 1 bit! Ours apply to more general extractors.

Our lower bounds are weaker, but tight! More output bits help learning.

Cumulative Memory in the Streaming Model, Continued

Used to give a streaming problem with small average case memory usage,
O(log(n)), but requires large memory at some point (√n).

Why not use prior learning lower bounds?

Their algorithm only work in the random order model.

Ours work for more standard, adversarially ordered streams.

Prior results had large symbols in the stream (like size n1/4).

Ours has more standard length O(log(n)) symbols.

Time and Space Efficient Encoding

Bazzi and Mitter proved that linear time encoders for good codes use linear space.

So we can only hope for almost linear time.

(Punctured) Repeat Accumulate: time O(nlog(n)) space O(log(n))

Non-Uniform

Gál, Hansen, Koucký, Pudlák and Viola: time O(n polylog(n)) space O(log(n))

Non-Uniform

Us: time n1+o(1) space no(1), Uniform

Efficient Interactive Proofs

Time T space S algorithms have interactive proofs with:

Verifiers that run in time Õ(n + Slog(T)).

Verifiers that run in space Õ(S).

Provers that run in time 2O(S).

Even holds for nondeterministic algorithms (with up to log(T) alternations).

Similar results also hold for randomized algorithms.

Open Problems

Open Problems - About Codes

1. Find a single code that is encodable and decodable in space no(1), time n1+o(1).

2. Give List Decoders with better constants. Ours are like 1020.

3. Give time/space efficient uniform decoders for more codes (like multiplicity

codes).

a. Our uniform decoders are only for lifted Reed-Solomon.

b. Our technique for multiplicity codes only gives non-uniform decoders.

4. Give List Decoders for codes with constant rate when achieving space no(1),

time n1+o(1).

Open Problems - About Interactive Proofs

1. For any time T space S algorithms, give an interactive proof whose:
a. Verifier runs in time poly(S)
b. Prover runs in time poly(T)

(This is solved when T = poly(S) or log(T) = O(S), but not in general)

2. Give PCPs whose prover runs in (Complexity Preserving PCPs
a. Time almost T and space almost S.
b. Reason to think is impossible (Based on encoding lower bounds)

i. Just give prover time times space less than S T (of original)

Thanks To My Collaborators and Other Students

Co-Authors

Dana Moshkovitz

Ron Rothblum

Niels Kornerup

John Kallaugher

And all the other faculty and students I have had many great conversations with.

Extra Technical Details

Why not multiplicity?
Multiplicity codes based on low
degree polynomial, p.

Symbols not just p(x), but also
contains derivatives of p at x.

x
For instance, contains all the first
order derivatives.

Recovering it requires derivatives
in all directions.

Can’t get directional derivatives
outside that plane!

Why not Multiplicity codes?

Multiplicity codes need psuedorandom lines, like ours.

But multiplicity needs lines in directions that spans the space.

Otherwise some directional derivatives cannot be recovered.

Our first sampling step restricts us to a subspace:

Can’t get derivatives outside that subspace.

Similar sampler may work, but the samples need more structure than just being
lines (a single line is not sufficient for correcting even a single symbol).

However, our techniques give a non-uniform decoder.

Reed Solomon
Decoding

To decode Reed-Muller we
decode along lines.

Reed-Muller codes are codes
that are low degree polynomials
when restricted to lines. n-dDegree d Redundancy Corruption

Codeword is degree d polynomial in field size p

Two polynomials
only agree on d

places

Distance of code
is p - d

Correction succeeds
if corruption is less
than half of p - d

A line decodes correctly if it
samples less than (p-d)/2
corruptions.

