
More Verifier Efficient Interactive
Proofs For Bounded Space

Joshua Cook

Program To Run
• Deterministic Machine M in TISP[T, S]

– Time T, Space S
• Think S ≪ n ≪ T

– S = n⍺, T = 2Sβ, for ⍺, β > 1
O(log(n) + log(S))

Memory Head ICInput

n S O(1)

Arthur Doesn’t Have Time!
Arthur wants to run M.
Doesn’t have exponential time in S!

Merlin can help, but untrusted.
Has exponential time, but just 2O(S).

Interactive Proofs (IPs)
Untrusted Merlin
(Prover P)
Randomized Arthur
(Verifier V)

Many Questions and
Answers.

Results

Interactive Time
L in ITIME[TV, TP]

Verifier time TV, Prover time TP

Completeness: If x in L,
then P convinces V with probability ⅔

Soundness: If x not in L,
then NO P’ convinces V with probability ⅓

Main Result for TISP[T, S]
US: ITIME[Õ(log(T)S + n), 2O(S)]

(Previous Best, time not explicit prior)
Sha: ITIME[Õ(log(T)(S + n)), 2O(log(T)(S + n))]
GKR: ITIME[Õ(log(T)S2 + n), 2O(S)]
RRR: ITIME[To(1)S2 + n, T1+o(1)SO(1)]

Us Vs Shamir
IP for SPACE[n⍺] T = 2S

Verifier Time nβ

⍺ vs β

Ours is better when S < n

Our prover is ALWAYS faster

2O(S) vs 2O(S2)

IPs for Randomized Space
• Let L ∈ BPSPACE[S]
• Standard: Saks Zhou, L ∈ SPACE[S3/2]:

– Shamir, L has time S3 verifier
• Us, Use Nisan’s PRG with Our IP:

– Reduction: space S, input length S2

– Our IP, L has time S2 verifier
– Match’s deterministic IP

Nondeterministic Result
IP for NTISP[T, S]

US: ITIME[Õ(log(T)2S + n), 2O(S)]
Sha: ITIME[Õ(log(T)2(S + n)), 2O(log(T)(S +

n))]
GKR: ITIME[Õ(log(T)S2 + n), 2O(S)]
RRR: NA

Us Vs GKR
IP for NTISP[2n⍺, n]

Verifier Time nβ

⍺ vs β

Ours is better
When T ≪ 2S

Deterministic Algorithm

Both Prover 2O(S)

Proof

Proof Outline
Us
• Space to Matrix

– Simpler reduction
• Matrix Sum Check

– Simpler
• Arithmetize Multitape

– Allows S < n

Shamir
• Space to QBF

– Needs conditioning
• QBF Sum Check

– Requires Specific
Format Reduction

• Arithmetize Single

Why Not Single Tape TM?
Single tape TM require S > n

Concern, need Õ(n + S) time arithmetization
Show for multitape TM, paper uses RAM

RAM more efficient, only constant factor

Reduction To Matrix

Computation Graph
View space S program as
2S state graph, G
Edges are state transitions

Graph is a function of
Input, Program

Accepts IFF there is a length T path
from start to end.

Edges are fast to compute

1010001
+0110110Input

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Start

End

Adjacency Matrix
Represent G as an adjacency, M

Algorithm accepts in time T iff
MT

start, end = 1

By repeated squaring,
MT = M2t

For t = log(T)

Run matrix sum check log(T) times

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Matrix Sum Check

Sum Check (LFKN)
Given: individual degree d polynomial, p: 𝔽S→𝔽,

and ⍺ ∈ 𝔽

Reduce claim: ⍺ = ∑a∈{0,1}S p(a)

To new claim: ꞵ = p(b)
some ꞵ ∈ 𝔽, b ∈ 𝔽S

Sum Check Protocol
• Ask for p1(x) = ∑a∈{0,1}S-1 p(x, a)
• Check if ⍺ = p1(0) + p1(1)
• Set b1 randomly
• Ask for p2(x) = ∑a∈{0,1}S-2 p(b1, x, a)
• Check if p1(b1) = p2(0) + p2(1)

• …

Sum Check Idea
(Schwartz-Zippel)

If ⍺ ≠ ∑a∈{0,1}S p(a), then p1
is incorrect.

p1 is degree d, equal to
true p1 ≤ d places

Pr[agree at b1] ≤ d / |𝔽|

Sum Check Performance
There exists an IP with verifier V, prover P:

Completeness: If ⍺=∑a∈{0,1}S p(a), with P, V gives
ꞵ∈𝔽 and b∈𝔽S s.t. ꞵ=p(b)

Soundness: If ⍺≠∑a∈{0,1}S p(a), for any P’, V gives
ꞵ=p(b) with probability < Sd / |𝔽|

Time: Verifier Sd Õ(log(|𝔽|)) Prover 2O(S) Õ(log(|𝔽|))

Matrix Multilinear Extension
For 2Sx2S matrix M containing elements of 𝔽

Let M : 𝔽S ⨉ 𝔽S →𝔽 be s.t.
M is multilinear (individual degree 1)
For any a, c ∈{0,1}S, M(a, c) = Ma,c

Matrix Sum Check (Thaler)
By definition M2

a,c = ∑b∈{0,1}S Ma,bMb,c

Also have M2(a,c)= ∑b∈{0,1}S M(a,b)M(b,c)

For claim ⍺ = M2(a,c), let p(b) = M(a,b)M(b,c)
Sum check reduces to ꞵ = M(a,b)M(b,c)

Product Reduction
Reduce claim: ꞵ = p(a)p(b)
To new claim: ⍺’ = p(c)
• Let ψ: 𝔽 →𝔽S be line s.t. ψ(0) = a, ψ(1) = b

ψ(x) = (1-x) a + x b
• Ask for degree S polynomial q(x) ≝ p(ψ(x))
• Check if ꞵ = q(0)q(1)
• For random z, set ⍺’ = q(z), c = ψ(z)

⍺’ = q(z) = p(ψ(z)) = p(c)

Repeated Square Rooting
For start a, end b:
Verifier given claim MT

a,b=1, or MT(a,b) = 1
Reduce to claim M2t-1

(a’,b’)=⍺’, M2t-2
(a’’,b’’)=⍺’’...

After log(T) times, have claim M(a*,b*) = ⍺*
Uses S log(T) operations over 𝔽

Arithmetization

Calculate M, multilinear extension
From program definition, Ma,b simple.

How to calculate M?

Sum over every edge in program, simple
formula can calculate easily.

Two Tape TM
Program has two tapes, input and
working, Λ program transitions

Input x,
Initial state a = (p, i, h, w)
Final state b = (p’, i’, h’, w’)

p, p’ TM program states,
i, i’ input heads
h, h’ working space heads
w, w’ working space contents

x

w
i

h

p
1, R
0, 0, L

1, R
1, 1, L

0, R
0, 1, R

0, L
1, 0, L

Transition Function
∑λ∈Λ u(λ, p) v(λ, p’) Inp(λ, x, i, i’) Wrk(λ, h, h’, w, w’)

u λ is from state p v λ is to state p’
Inp x at i has symbol in λ, i’ is i+1 or i-1 from λ

Wrk w at h from λ, h’ is h+1 or h-1 from λ,
w’ at h from λ, w’ = w elsewhere

Use different symbols! Calculate extensions separately!

Closer Look: Wrk(λ, h, h’, w, w’)
∑i∈[S] eq(i, h) eq(i+D(λ), h’) bef(i, w, w’) aft(i, w, w’)

eq(us(λ), wi) eq(vs(λ), w’i)

eq checks equality D 1 for R, -1 for L
bef equality before i aft equality after i
us starting symbol vs ending symbol
Use different symbols! Calculate extensions separately!

Calculate Wrk Efficiently
• eq(wi, w’i) = wiw’i + (1 - w’i)(1 - w’i)
• bef(i+1, w, w’) = bef(i, w, w’) eq(wi, w’i)
• bef(i, w, w’) can be calculated for each i in

O(S) operations. aft similarly
• Similarly, eq(i, h) for each i with O(S) ops.
• Only O(S) operations in Wrk

Finishing up Arithmetization
• Inp similarly calculated in O(n) operations
• Total M only takes O(n + S) operations.

Prover Time
Entire M can be constructed in time ~ 22S

Each Mk for k = 2i in time ~ log(T)2⍵S

Any Mk(a, b) calculated in time ~ 22S

Open Problems
• Remove log(T) factor from verifier time
• Do nondeterministic algorithms have

same verifier time as deterministic?
• Same verifier time, poly(T) time prover?
• Gives quadratic gap interactive hierarchy

– Fine grain interactive hierarchy?

Citations
• Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.

“Algebraic methods for interactive proof systems”. FOCS 1990.
• Adi Shamir. “IP = PSPACE”. JACM 1992.
• Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.

“Delegating computation: Interactive proofs for muggles”. JACM
2015.

• Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum.
“Constant-round interactive proofs for delegating computation”.
STOC 2016.

• Michael Saks and Shiyu Zhou. “BpH space(s)⊆dspace(s3/2)”. J.
Comput. Syst. Sci. 1999.

• Noam Nisan. “Pseudorandom generators for space-bounded
computations”. STOC 1990.

• Justin Thaler. “Time-Optimal Interactive Proofs for Circuit
Evaluation”. CRYPTO 2013.

