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Program To Run

. Deterministic Machine M in TISPIT, S]
- Time T, Space S

. Think S K< n<KT
- §=n%T=_8P fora, B >1

O(log(n) + log(S))

n S o(1)
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Arthur Doesn’'t Have Time!

&, Arthur wants to run M.

/“h Doesn’t have exponential time in S!
£ .

N Merlin can help, but untrusted.

¥  Has exponential time, but just 2°6).




‘The University of Texas at.

Interactive Proofs (IPs)

Untrusted Merlin g
(Prover P)
Randomized Arthur
(Verifier V)

Many Questions and
Answers.
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Results
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Interactive Time
L In ITIME[TV, TP]

Verifier time TV, Prover time TP

Completeness: If x in L,
then P convinces V with probability 75

Soundness: If x notin L,
then NO P’ convinces V with probability 3
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Main Result for TISP[T, S}

US:

ITIME[O(log(T)S + n), 2°C)]

(Previous Best, time not explicit prior)

Sha:
GKR:
RRR:

[IME
[IME

[IME

O(log(T)(S + n)), 200N+ )]
O(log(T)S? + n), 2°¢)]

'To(1)82 + N, T1+o(1)80(1)]
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Verifier Time vs Space (When T = 2”°S)

Us Vs Shamir

IP for SPACE[n?] T =28
Verifier Time nP

o vs 3
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Ours is better when S <n

Our prover is ALWAYS faster
O(S) vs 20(82) ; ; ; : 0.8 10 12 14

log_n(S)

2




|IPs for Randomized Space

. Let L € BPSPACE[S]

. Standard: Saks Zhou, L € SPACE[S¥7]:
_ Shamir, L has time S? verifier

. Us, Use Nisan’'s PRG with Our IP:

_ Reduction: space S, input length S?
_ Our IP, L has time S? verifier
- Match’s deterministic IP
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Nondeterministic Result
IP for NTISP[T, S]

US:
Sha:
n))]

GKR:
DPD-

ITIME[O(log(T)2S + n), 2°6))
ITIME[O®log(T)X(S + n)), 2008 +

ITIME[O(log(T)S? + n), 2°C)]
WA\
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Verifier Time vs Nondet Algorithm Time (S = n)
Us Vs GKR -

IP for NTISP[n, n]
Verifier Time nP

o vs 3

_
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Ours is better
When T K 2°
Deterministic Algorithm

; ; 0.4 0.6
I (log(T))
Both Prover 20 i




Proof
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Proof Outline

Us

* Space to Matrix
— Simpler reduction

« Matrix Sum Check
— Simpler

* Arithmetize Multitape
— Allows S <n

Shamir
« Space to QBF

— Needs conditioning
 QBF Sum Check
— Requires Specific
Format Reduction
* Arithmetize Single
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Why Not Single Tape TM?
Single tape TM require S > n

Concern, need O(n + S) time arithmetization
Show for multitape TM, paper uses RAM

RAM more efficient, only constant factor
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Reduction To Matrix




1010001
SEUM 0000
' l
Computation Graph 0

View space S program as

25 state graph, G 0100 0101
Edges are state transitions

<—

0110

Graph is a function of
Input, Program

Accepts IFF there is a length T path 1010

from start to end.
1100

Edges are fast to compute

-
N
Ny <—| R
o
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1
1
Adjacency Matrix 1
1
Represent G as an adjacency, M 1
1
Algorithm accepts in time T iff 1
MT =1 L
start, end 1
_ 1
By repeated squaring, 1
T— ot
M' =2 1
For t = log(T) 1
1
Run matrix sum check log(T) times
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Matrix Sum Check




Sum Check (LFKN)

Given: individual degree d polynomial, p: F°>—F,
and o € ¥

Reduce claim: « = Zae{o . p(a)

To new claim: 1 =p(b)
somell € F,b e F°



Sum Check Protocol

. Askfor p.(x) = 286{0,1}34 p(X, a)
. Checkif « =p,(0) +p,(1)

. Set b, randomly

. Askfor p,(x) = 286{0,1}8-2 p(b,, x, a)
. Checkif p.(b,) =p,(0)+p,(1)



Sum Check Idea If a # ZaE{O 1" p(a), then oF
SR, is incorrect.

p, Is degree d, equal to
true p, < d places

Prlagree atb.] <d/ [F]
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Sum Check Performance

There exists an IP with verifier V, prover P:

Completeness: |If a=ZaE{O ¥ p(a), with P, V gives
J€F and beF® s.t. O=p(b)

Soundness: |If a;ﬁzae{o ¥ p(a), for any P’, V gives
[1=p(b) with probability < Sd / |F|

Time: Verifier Sd O(log(|F|))  Prover 2°®) O(log(|F|))
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Matrix Multilinear Extension
For 2°x2° matrix M containing elements of F

Let M : F° x F° —TF be s.t.

M is multilinear (individual degree 1)
Forany a, ¢ €{0,1}°>, M(a,c) =M__
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Matrix Sum Check (Thaler)

T 2 _
By definition M ac = Zocpar My oM,

Also have M?(a,c) M(a,b)M(b,c)

= ZbE{O,1}S

For claim a = M?(a,c), let p(b) = M(a,b)M(b,c)
Sum check reduces to [1 = M(a,b)M(b,c)
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Product Reduction

Reduce claim: [1 = p(a)p(b)
To new claim: o’ = p(c)
e Lety:F —F°belines.t. y0)=a, y(1)=b
Wpx)=(1-x)a+xb
« Ask for degree S polynomial q(x) £ p(w(x))
e Check if 1=9(0)q(1)
 Forrandom z, set o’ = q(z), c = w(z)

a’ = q(z) = p(w(z)) = p(c)




Repeated Square Rooting

For start a, end b:
Verifier given claim M'_ =1, or M'(a,b) = 1

- t-1 =’ . ="
Reduce to claim Mz @)= Mz o ...

b) (@"b")

After log(T) times, have claim M(a*,b*) = o*
Uses S log(T) operations over F
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Arithmetization
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Calculate M, multilinear extension
From program definition, M_, simple.

How to calculate M?

Sum over every edge in program, simple
formula can calculate easily.
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Two Tape TM

Program has two tapes, input and
working, /A program transitions

Input X,

Initial state a = (p, i, h, w) o :

Final state b = (p’, i’, h’, w’)

o
or
=

0,R
0,1,

p, P TM program states,

i, " input heads ‘

h, h® working space heads
w, W working space contents ‘ ‘
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Transition Function
> e U, P) V(A, p)) Inp(A, X, i, ') Wrk(A, h, ', w, w’)

u A is from state p v Als to state p’
Inp xatihas symbolinA, i"isi+1 ori-1 from A

Wrk wath fromA, h'is h+1 or h-1 from A,
w’ at h from A, w’ = w elsewhere

Use different symbols! Calculate extensions separately!



Closer Look: Wrk(A, h, h’, w, w’)

Zie[s] eq(i, h) eq(i+D(A), h’) bef(i, w, w’) aft(i, w, w’)
eq(us(A), w.) eq(vs(A), w')

eq checks equality D 1 for R, -1 for L
bef equality before | aft equality after i
us  starting symbol vs  ending symbol

Use different symbols! Calculate extensions separately!



Calculate Wrk Efficiently

. eq(w, w)=ww. + (1-w)(1-w)

. bef(i+1, w, w’) = bef(i, w, w’) eq(w, w’)

. bef(i, w, w’) can be calculated for each i in
O(S) operations. aft similarly

. Similarly, eq(i, h) for each i with O(S) ops.

. Only O(S) operations in Wrk
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Finishing up Arithmetization

. Inp similarly calculated in O(n) operations
. Total M only takes O(n + S) operations.
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Prover Time
Entire M can be constructed in time ~ 2%°

Each M* for k = 2' in time ~ log(T)2®°

Any MK(a, b) calculated in time ~ 225



Open Problems

. Remove log(T) factor from verifier time

. Do nondeterministic algorithms have
same verifier time as deterministic?

. Same verifier time, poly(T) time prover?

. Glves quadratic gap interactive hierarchy
- Fine grain interactive hierarchy?
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