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● Perfect Completeness: an honest Prover always succeeds

● Statistical Soundness: any Prover is unlikely to trick Verifier

● Primary goal: minimize Verifier time.

● Secondary goal: minimize Prover time, Verifier space,

generalize to alternating algorithms

Other interactive protocols have much faster provers [RRR16].



IPs for Deterministic Algorithms

TISP[T, S]: time T and space S algorithms.

ITIME[T]: IP with T Verifier time.

[LFKN90, Shamir90, GKR08, HMS13, Thaler20, Cook22]

TISP[T, S]  ITIME[Õ(n + S log(T))]⊆
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Generalization

Generalizes to alternating algorithms with few alternations.

ATISPd[T, S]  ITIME[Õ(n + S log(T) + Sd)]⊆

● Closely related to depth d circuits [Ruz81].
● Non-trivial to reduce to Alternating algorithms to 

nondeterministic ones.
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Computation Graph

View space S program as

2S state graph, G

Edges are state transitions

Graph is a function of

Input, Program

Accepts IFF there is a length T path 
from start to end.

Edges are fast to compute

1010001
+0110110

Input

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Start

End



Adjacency Matrix For Deterministic 
Algorithms

Represent G as an adjacency, M

Algorithm accepts in time T iff

MT
start, end = 1

For deterministic algorithms, for all i, 
Mi is a binary matrix.

With sum check [Thaler14, HMS13] 
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Nondeterministic 
Algorithm Matrix

For nondeterministic algorithms:

MT
start, end = #valid proofs

Matrix entries could be very large.

Random field size can help, but 
gives log(T) overhead of [Cook22].

Can’t use sums, need to use ORs.
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Reduction

Let M be the multilinear extension of M.

Given claim that M(2)(u,v) = , want to reduce to claim that 𝛼 M(u’,v’) = 𝛽

Attempt 1, use M(2)(u,v) = 1 - ∏w∈{0,1}S(1 - M(u, w) M(w, v)).

Degree is way too high: 2S

Can handle one variable of w at a time with relinearizations [She92], but 
takes S linearizations of S variables, requires time Õ(S2).



Degree Reduction



Razborov Smolensky

Razborov-Smolensky reduces 
degree

Idea: replace ⋁i [k]∈  xi

 with  ∑j [k]∈  rj xj mod 2

Where r is uniform random.

● Low degree, linear in GF(2).
● If all x are 0, outputs 0.
● If any x 1, then output 1 

with probability 1/2.

1 =  0 0 1 0 1 1 1 0 1 0 1 0 0⋁
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Razborov Smolensky 
continued

Probability of failure decreases 
exponentially with repetitions.

Pru[1-∏i [L]∈ (1-∑j [k]∈ ri,j xj)≠⋁i [k]∈ xi]≤2-L

m = 2O(S) ANDs, choose L = 2ℓ = 
Ω(S). Most approximations are 
correct.

● Degree is small, O(S)
● ℓ = O(log(S)) variables

1 =  0 0 1 0 1 1 1 0 1 0 1 0 0⋁
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Applying Razborov Smolensky

Approximate ⋁w {0,1}∈ S M(u, w) M(w, v)
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Approximate ⋁w {0,1}∈ S M(u, w) M(w, v)

With 1 - ∏i [O(S)]∈  (1 - ∑w {0,1}∈ S ri,w M(u, w) M(w, v))

Problem, too much randomness!!

Want seed length O(S)!

Completely random r has seed length S 2S!!
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Like [GR20], epsilon biased sets to sample r.

● Epsilon biased sets fool parity functions, Razborov-Smolensky IS a 
conjunction of parity functions!

● Epsilon biased sets equivalent to codes, easy to compute.
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Derandomization Step 1, Epsilon Biased Sets

Like [GR20], epsilon biased sets to sample r.

● Epsilon biased sets fool parity functions, Razborov-Smolensky IS a 
conjunction of parity functions!

● Epsilon biased sets equivalent to codes, easy to compute.

1 - ∏i [O(S)]∈  (1 - ∑w {0,1}∈ S D(seedi, w) M(u, w) M(w, v))

● Takes O(S) bits for one seed for one choice of i: seedi.

● But O(S) parities, O(S2) bits to sample them independently. Too much!
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Unlike [GR20], select O(S) 
seeds using a length O(S) 
walk on expander graph.
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● Walk is efficient, epsilon 
biased set is efficient, D is 
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Main Reduction

1 - ∏i {0,1}∈ ℓ (1 - ∑w {0,1}∈ S D(walki, w) M(u, w) M(w, v))

● Represent i as binary, so it has ℓ = O(log(S)) bits.

● Remove one variable in i at a time.

○ For each variable need to do relinearization: S Õ(log(S))

○ Need to do a product reduction: Õ(log(S))

● Total time: S log(S) Õ(log(S))

Left with a claim about the multilinear extension of D walk and ∘ M.



Final points

● Need to run reduction log(T) times and compute multilinear extension 
of computation graph. Total time:

O(n + S log(T) log(S))Õ(log(S))

● Use IP for deterministic algorithms to verify claim about D walk.∘
● If seeds fail, can prove they fail.
● Same idea works for unbounded fan-in circuits.

○ Faster than GKR for very large fan in.
○ Less optimized prover.



Contrast with GR20

Similar:

● Optimized for unbounded fan-in circuits.

● Uses Razborov Smolensky.

● Uses same epsilon biased sets.

● Achieve perfect completeness when seed 

is bad in same way.

Different:

● Optimized for time, instead of rounds.

○ More rounds to do degree reduction.

○ Lower degree polynomials.

○ Only constant number of claims at once.

● Requires further derandomization using 

random walks on expanders.

● Uses fast Interactive Provers for 

deterministic algorithms instead of direct 

arithmetization.



Open Problems

● Better Doubly Efficient Interactive Proofs (fast provers and verifiers).

● Extend Results to Threshold Circuits (Our results give fast verifiers for 

AC[ ] circuits).⊕

● Give protocols for randomized algorithms with simultaneous:

○ Same verifier time

○ Perfect completeness

○ 2O(S) prover time (as opposed to 2O(Slog(T))).
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