
Efficient Interactive Proofs for
Non-Deterministic Bounded Space

Joshua Cook (UT Austin) and
Ron Rothblum (Technion)

Background

Interactive Proofs (IPs)?

Untrusted Prover (Merlin)

Randomized Verifier (Arthur)

Many Questions

Interactive Proofs (IPs)?

Untrusted Prover (Merlin)

Randomized Verifier (Arthur)

Many Questions

Interactive Proofs (IPs)?

Untrusted Prover (Merlin)

Randomized Verifier (Arthur)

Many Questions

Interactive Proofs (IPs)?

Untrusted Prover (Merlin)

Randomized Verifier (Arthur)

Many Questions

Interactive Proofs (IPs)?

Untrusted Prover (Merlin)

Randomized Verifier (Arthur)

Many Questions

Interactive Proofs (IPs)?

Untrusted Prover (Merlin)

Randomized Verifier (Arthur)

Many Questions

Goal

● Perfect Completeness: an honest Prover always succeeds

● Statistical Soundness: any Prover is unlikely to trick Verifier

● Primary goal: minimize Verifier time.

● Secondary goal: minimize Prover time, Verifier space,

generalize to alternating algorithms

Goal

● Perfect Completeness: an honest Prover always succeeds

● Statistical Soundness: any Prover is unlikely to trick Verifier

● Primary goal: minimize Verifier time.

● Secondary goal: minimize Prover time, Verifier space,

generalize to alternating algorithms

Other interactive protocols have much faster provers [RRR16].

IPs for Deterministic Algorithms

TISP[T, S]: time T and space S algorithms.

ITIME[T]: IP with T Verifier time.

[LFKN90, Shamir90, GKR08, HMS13, Thaler20, Cook22]

TISP[T, S] ITIME[Õ(n + S log(T))]⊆

Why IPs for nondeterministic algorithms?

Natural generalization, extremely well studied.

Why IPs for nondeterministic algorithms?

IP verifiers are programs with nondeterminism AND randomness.

● Using Nisan’s [Nisan90] PRG, IPs speed up randomized algorithms

as much as known for deterministic [Cook22].

● Should IPs speed up nondeterministic algorithms as much?

Randomness Time T, Space S

Nondeterminism
Time T, Space S

Natural generalization, extremely well studied.

Why IPs for nondeterministic algorithms?

IP verifiers are programs with nondeterminism AND randomness.

● Using Nisan’s [Nisan90] PRG, IPs speed up randomized algorithms

as much as known for deterministic [Cook22].

● Should IPs speed up nondeterministic algorithms as much?

+Randomness Time T, Space S Nondeterminism

Nondeterminism
Time T, Space S

Natural generalization, extremely well studied.

Why IPs for nondeterministic algorithms?

IP verifiers are programs with nondeterminism AND randomness.

● Using Nisan’s [Nisan90] PRG, IPs speed up randomized algorithms

as much as known for deterministic [Cook22].

● Should IPs speed up nondeterministic algorithms as much?

+
Randomness Nondeterminism
Time Õ(Slog(T)), Space Õ(S)

Randomness Time T, Space S Nondeterminism →

Nondeterminism
Time T, Space S

Natural generalization, extremely well studied.

Why IPs for nondeterministic algorithms?

IP verifiers are programs with nondeterminism AND randomness.

● Using Nisan’s [Nisan90] PRG, IPs speed up randomized algorithms as

much as known for deterministic [Cook22].

● Should IPs speed up nondeterministic algorithms as much?

+
Randomness Nondeterminism
Time Õ(Slog(T)), Space Õ(S)

Randomness Time T, Space S Nondeterminism →

+
Nondeterminism
Time T, Space S

Randomness

Natural generalization, extremely well studied.

Why IPs for nondeterministic algorithms?

IP verifiers are programs with nondeterminism AND randomness.

● Using Nisan’s [Nisan90] PRG, IPs speed up randomized algorithms as

much as known for deterministic [Cook22].

● Should IPs speed up nondeterministic algorithms as much?

+
Randomness Nondeterminism
Time Õ(Slog(T)), Space Õ(S)

Randomness Time T, Space S Nondeterminism →

+
Randomness Nondeterminism

Time ?, Space ?
Nondeterminism
Time T, Space S

Randomness →

Natural generalization, extremely well studied.

Results

Result

Prior verifier for nondeterministic algorithms [Cook22]:

NTISP[T, S] ITIME[Õ(n + S log(T)⊆ 2)]

Our results:

NTISP[T, S] ITIME[Õ(n + S log(T))]⊆
*Our verifiers also have space Õ(S)

IPs for NTISP as fast as known for TISP, up to a log(S) factor.

+
Nondeterminism
Time T, Space S

Randomness →
Randomness Nondeterminism
Time Slog(T)2, Space Slog(T)

Result

Prior verifier for nondeterministic algorithms [Cook22]:

NTISP[T, S] ITIME[Õ(n + S log(T)⊆ 2)]

Our results:

NTISP[T, S] ITIME[Õ(n + S log(T))]⊆
*Our verifiers also have space Õ(S)

IPs for NTISP as fast as known for TISP, up to a log(S) factor.

+
Randomness Nondeterminism
Time Õ(Slog(T)), Space Õ(S)

Nondeterminism
Time T, Space S

Randomness →

Generalization

Generalizes to alternating algorithms with few alternations.

ATISPd[T, S] ITIME[Õ(n + S log(T) + Sd)]⊆

Generalization

Generalizes to alternating algorithms with few alternations.

ATISPd[T, S] ITIME[Õ(n + S log(T) + Sd)]⊆

● Closely related to depth d circuits [Ruz81].
● Non-trivial to reduce to Alternating algorithms to

nondeterministic ones.

Techniques for Prior Results

Computation Graph

View space S program as

2S state graph, G

Edges are state transitions

Graph is a function of

Input, Program

Accepts IFF there is a length T path
from start to end.

Edges are fast to compute

1010001
+0110110

Input

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Start

End

Adjacency Matrix For Deterministic
Algorithms

Represent G as an adjacency, M

Algorithm accepts in time T iff

MT
start, end = 1

For deterministic algorithms, for all i,
Mi is a binary matrix.

With sum check [Thaler14, HMS13]

can reduce M2(x0, x1) = 𝛼

to M(y0,y1) = 𝛽

In time Õ(S).

1
1

1
1

1
1

1
1

M =

Adjacency Matrix For Deterministic
Algorithms

Represent G as an adjacency, M

Algorithm accepts in time T iff

MT
start, end = 1

For deterministic algorithms, for all i,
Mi is a binary matrix.

With sum check [Thaler14, HMS13]

can reduce M2(x0, x1) = 𝛼

to M(y0,y1) = 𝛽

In time Õ(S).

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1

M = M2 =

Adjacency Matrix For Deterministic
Algorithms

Represent G as an adjacency, M

Algorithm accepts in time T iff

MT
start, end = 1

For deterministic algorithms, for all i,
Mi is a binary matrix.

With sum check [Thaler14, HMS13]

can reduce M2(x0, x1) = 𝛼

to M(y0,y1) = 𝛽

In time Õ(S).

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1

1
1

1
1

1
1
1
1

M = M2 =

M4 =

Adjacency Matrix For Deterministic
Algorithms

Represent G as an adjacency, M

Algorithm accepts in time T iff

MT
start, end = 1

For deterministic algorithms, for all i,
Mi is a binary matrix.

With sum check [Thaler14, HMS13]

can reduce M2(x0, x1) = 𝛼

to M(y0,y1) = 𝛽

In time Õ(S).

1
1

1
1

1
1

1
1

1
1

1
1

1
1
1
1

1
1

1
1

1
1
1
1

1
1
1

1
1

1
1
1

M = M2 =

M4 = M8 =

Nondeterministic
Algorithm Matrix

For nondeterministic algorithms:

MT
start, end = #valid proofs

Matrix entries could be very large.

Random field size can help, but
gives log(T) overhead of [Cook22].

Can’t use sums, need to use ORs.

1 1
1 1

1 1
1

1 1
1 1

1 1
1

M =

Nondeterministic
Algorithm Matrix

For nondeterministic algorithms:

MT
start, end = #valid proofs

Matrix entries could be very large.

Random field size can help, but
gives log(T) overhead of [Cook22].

Can’t use sums, need to use ORs.

1 1
1 1

1 1
1

1 1
1 1

1 1
1

1 2 1
2 1
1 1 1
1
1 1 2
1 2
1 1

1

M = M2 =

Nondeterministic
Algorithm Matrix

For nondeterministic algorithms:

MT
start, end = #valid proofs

Matrix entries could be very large.

Random field size can help, but
gives log(T) overhead of [Cook22].

Can’t use sums, need to use ORs.

1 1
1 1

1 1
1

1 1
1 1

1 1
1

1 2 1
2 1
1 1 1
1
1 1 2
1 2
1 1

1

4 1 2 2
3 1 2
3 3
1

2 3
1 2
1 1

1

M = M2 =

M4 =

Nondeterministic
Algorithm Matrix

For nondeterministic algorithms:

MT
start, end = #valid proofs

Matrix entries could be very large.

Random field size can help, but
gives log(T) overhead of [Cook22].

Can’t use sums, need to use ORs.

1 1
1 1

1 1
1

1 1
1 1

1 1
1

1 2 1
2 1
1 1 1
1
1 1 2
1 2
1 1

1

4 1 2 2
3 1 2
3 3
1

2 3
1 2
1 1

1

7 6
4 3
3 3
1
2 3

1 2
1 1

1

M = M2 =

M4 = M8 =

Boolean Formula for M(2)

For notation, let M(u,v) = Mu,v

M2(u,v) = ∑w∈{0,1}S M(u,w) M(w,v)

Replace + with ∨

M(2)(u,v)=⋁w∈{0,1}S M(u, w)M(w, v)

1 1
1 1

1 1
1

1 1
1 1

1 1
1

M =

Boolean Formula for M(2)

For notation, let M(u,v) = Mu,v

M2(u,v) = ∑w∈{0,1}S M(u,w) M(w,v)

Replace + with ∨

M(2)(u,v)=⋁w∈{0,1}S M(u, w)M(w, v)

1 1
1 1

1 1
1

1 1
1 1

1 1
1

1 1 1
1 1
1 1 1
1
1 1 1
1 1
1 1

1

M = M(2) =

Boolean Formula for M(2)

For notation, let M(u,v) = Mu,v

M2(u,v) = ∑w∈{0,1}S M(u,w) M(w,v)

Replace + with ∨

M(2)(u,v)=⋁w∈{0,1}S M(u, w)M(w, v)

1 1
1 1

1 1
1

1 1
1 1

1 1
1

1 1 1
1 1
1 1 1
1
1 1 1
1 1
1 1

1

1 1 1 1
1 1 1
1 1
1

1 1
1 1
1 1

1

M = M(2) =

M(4) =

Boolean Formula for M(2)

For notation, let M(u,v) = Mu,v

M2(u,v) = ∑w∈{0,1}S M(u,w) M(w,v)

Replace + with ∨

M(2)(u,v)=⋁w∈{0,1}S M(u, w)M(w, v)

1 1
1 1

1 1
1

1 1
1 1

1 1
1

1 1 1
1 1
1 1 1
1
1 1 1
1 1
1 1

1

1 1 1 1
1 1 1
1 1
1

1 1
1 1
1 1

1

1 1
1 1
1 1
1
1 1

1 1
1 1

1

M = M(2) =

M(4) = M(8) =

Reduction

Let M be the multilinear extension of M.

Given claim that M(2)(u,v) = , want to reduce to claim that 𝛼 M(u’,v’) = 𝛽

Attempt 1, use M(2)(u,v) = 1 - ∏w∈{0,1}S(1 - M(u, w) M(w, v)).

Degree is way too high: 2S

Can handle one variable of w at a time with relinearizations [She92], but
takes S linearizations of S variables, requires time Õ(S2).

Degree Reduction

Razborov Smolensky

Razborov-Smolensky reduces
degree

Idea: replace ⋁i [k]∈ xi

 with ∑j [k]∈ rj xj mod 2

Where r is uniform random.

● Low degree, linear in GF(2).
● If all x are 0, outputs 0.
● If any x 1, then output 1

with probability 1/2.

1 = 0 0 1 0 1 1 1 0 1 0 1 0 0⋁

Razborov Smolensky

Razborov-Smolensky reduces
degree

Idea: replace ⋁i [k]∈ xi

 with ∑j [k]∈ rj xj mod 2

Where r is uniform random.

● Low degree, linear in GF(2).
● If all x are 0, outputs 0.
● If any x 1, then output 1

with probability 1/2.

1 = 0 0 1 0 1 1 1 0 1 0 1 0 0⋁

1 = ⊕ 0 0 1 0 0 0 0

Razborov Smolensky

Razborov-Smolensky reduces
degree

Idea: replace ⋁i [k]∈ xi

 with ∑j [k]∈ rj xj mod 2

Where r is uniform random.

● Low degree, linear in GF(2).
● If all x are 0, outputs 0.
● If any x 1, then output 1

with probability 1/2.

1 = 0 0 1 0 1 1 1 0 1 0 1 0 0⋁

1 = ⊕ 0 0 1 0 0 0 0

0 = ⊕ 0 1 0 1 1 1 0 0

Razborov Smolensky

Razborov-Smolensky reduces
degree

Idea: replace ⋁i [k]∈ xi

 with ∑j [k]∈ rj xj mod 2

Where r is uniform random.

● Low degree, linear in GF(2).
● If all x are 0, outputs 0.
● If any x 1, then output 1

with probability 1/2.

1 = 0 0 1 0 1 1 1 0 1 0 1 0 0⋁

1 = ⊕ 0 0 1 0 0 0 0

0 = ⊕ 0 1 0 1 1 1 0 0

0 = ⊕ 0 0 1 1 0 1 1 0

1 = ⊕ 1 0 1 1 0 0 0

0 = ⊕ 0 1 1 1 0 0 1 0

1 = ⊕ 1 0 1 0 1 0 0

Razborov Smolensky
continued

Probability of failure decreases
exponentially with repetitions.

Pru[1-∏i [L]∈ (1-∑j [k]∈ ri,j xj)≠⋁i [k]∈ xi]≤2-L

m = 2O(S) ANDs, choose L = 2ℓ =
Ω(S). Most approximations are
correct.

● Degree is small, O(S)
● ℓ = O(log(S)) variables

1 = 0 0 1 0 1 1 1 0 1 0 1 0 0⋁

Razborov Smolensky
continued

Probability of failure decreases
exponentially with repetitions.

Pru[1-∏i [L]∈ (1-∑j [k]∈ ri,j xj)≠⋁i [k]∈ xi]≤2-L

m = 2O(S) ANDs, choose L = 2ℓ =
Ω(S). Most approximations are
correct.

● Degree is small, O(S)
● ℓ = O(log(S)) variables

1 = 0 0 1 0 1 1 1 0 1 0 1 0 0⋁

1 = ⋁ ⊕ 0 0 1 0 0 0 0

⊕ 0 1 0 1 1 1 0 0

⊕ 0 0 1 1 0 1 1 0

⊕ 1 0 1 0 1 0 0

⊕ 0 1 1 1 0 0 1 0

⊕ 0 0 0 1 1

Applying Razborov Smolensky

Approximate ⋁w {0,1}∈ S M(u, w) M(w, v)

With 1 - ∏i [O(S)]∈ (1 - ∑w {0,1}∈ S ri,w M(u, w) M(w, v))

Applying Razborov Smolensky

Approximate ⋁w {0,1}∈ S M(u, w) M(w, v)

With 1 - ∏i [O(S)]∈ (1 - ∑w {0,1}∈ S ri,w M(u, w) M(w, v))

Problem, too much randomness!!

Want seed length O(S)!

Completely random r has seed length S 2S!!

Derandomization

Derandomization Step 1, Epsilon Biased Sets

Like [GR20], epsilon biased sets to sample r.

● Epsilon biased sets fool parity functions, Razborov-Smolensky IS a
conjunction of parity functions!

● Epsilon biased sets equivalent to codes, easy to compute.

Derandomization Step 1, Epsilon Biased Sets

Like [GR20], epsilon biased sets to sample r.

● Epsilon biased sets fool parity functions, Razborov-Smolensky IS a
conjunction of parity functions!

● Epsilon biased sets equivalent to codes, easy to compute.

1 - ∏i [O(S)]∈ (1 - ∑w {0,1}∈ S D(seedi, w) M(u, w) M(w, v))

Derandomization Step 1, Epsilon Biased Sets

Like [GR20], epsilon biased sets to sample r.

● Epsilon biased sets fool parity functions, Razborov-Smolensky IS a
conjunction of parity functions!

● Epsilon biased sets equivalent to codes, easy to compute.

1 - ∏i [O(S)]∈ (1 - ∑w {0,1}∈ S D(seedi, w) M(u, w) M(w, v))

● Takes O(S) bits for one seed for one choice of i: seedi.

● But O(S) parities, O(S2) bits to sample them independently. Too much!

Derandomization Step 2,
Random Walk Set Sampling

Unlike [GR20], select O(S)
seeds using a length O(S)
walk on expander graph.

seed0

seed1

seed2

seed3

Derandomization Step 2,
Random Walk Set Sampling

Unlike [GR20], select O(S)
seeds using a length O(S)
walk on expander graph.

seed0

seed1

seed2

seed3

 walk = (seed0, edge1, edge2, edge3)

|walk| = O(S) + O(1) + O(1) + O(1)

● Only takes seed length
O(S) to sample length O(S)
walk on length O(S) seeds!

● Walk is efficient, epsilon
biased set is efficient, D is
efficient.

Derandomization Step 2,
Random Walk Set Sampling

Unlike [GR20], select O(S)
seeds using a length O(S)
walk on expander graph.

1 - ∏i [O(S)]∈ (1 - ∑w {0,1}∈ S D(seedi, w) M(u, w) M(w, v))

seed0

seed1

seed2

seed3

 walk = (seed0, edge1, edge2, edge3)

|walk| = O(S) + O(1) + O(1) + O(1)

● Only takes seed length
O(S) to sample length O(S)
walk on length O(S) seeds!

● Walk is efficient, epsilon
biased set is efficient, D is
efficient.

Main Reduction

1 - ∏i {0,1}∈ ℓ (1 - ∑w {0,1}∈ S D(walki, w) M(u, w) M(w, v))

● Represent i as binary, so it has ℓ = O(log(S)) bits.

● Remove one variable in i at a time.

○ For each variable need to do relinearization: S Õ(log(S))

○ Need to do a product reduction: Õ(log(S))

● Total time: S log(S) Õ(log(S))

Left with a claim about the multilinear extension of D walk and ∘ M.

Final points

● Need to run reduction log(T) times and compute multilinear extension
of computation graph. Total time:

O(n + S log(T) log(S))Õ(log(S))

● Use IP for deterministic algorithms to verify claim about D walk.∘
● If seeds fail, can prove they fail.
● Same idea works for unbounded fan-in circuits.

○ Faster than GKR for very large fan in.
○ Less optimized prover.

Contrast with GR20

Similar:

● Optimized for unbounded fan-in circuits.

● Uses Razborov Smolensky.

● Uses same epsilon biased sets.

● Achieve perfect completeness when seed

is bad in same way.

Different:

● Optimized for time, instead of rounds.

○ More rounds to do degree reduction.

○ Lower degree polynomials.

○ Only constant number of claims at once.

● Requires further derandomization using

random walks on expanders.

● Uses fast Interactive Provers for

deterministic algorithms instead of direct

arithmetization.

Open Problems

● Better Doubly Efficient Interactive Proofs (fast provers and verifiers).

● Extend Results to Threshold Circuits (Our results give fast verifiers for

AC[] circuits).⊕

● Give protocols for randomized algorithms with simultaneous:

○ Same verifier time

○ Perfect completeness

○ 2O(S) prover time (as opposed to 2O(Slog(T))).

Citations
[Cook22] Joshua Cook. “More Verifier Efficient Interactive Protocols for Bounded Space”. In: 42nd IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022).

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating Computation: Interactive Proofs for
Muggles”. In: J. ACM 62.4 (Sept. 2015).

[GR20] Oded Goldreich and Guy N. Rothblum. “Constant-Round Interactive Proof Systems for AC0[2] and NC1”. In:
Computational Complexity and Property Testing: On the Interplay Between Randomness and Computation.

[HMS13] Edward Hirsch, Dieter van Melkebeek, and Alexander Smal. “Succinct Interactive Proofs for Quantified
Boolean Formulas, Comment 2”. In: Electronic Colloquium on Computational Complexity (ECCC), 2013.

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (Oct. 1992)

[She92] A. Shen. “IP = SPACE: Simplified Proof”. In: J. ACM 39.4 (1992)

[Tha20] Justin Thaler. The Unreasonable Power of the Sum-Check Protocol. 2020

[Nis90] Noam Nisan. “Pseudorandom Generators for Space-Bounded Computations”. In: Proceedings of the Twenty-
Second Annual ACM Symposium on Theory of Computing. STOC ’90.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-Round Interactive Proofs for Delegating
Computation”. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’16.

[Ruz81] Walter L. Ruzzo. “On uniform circuit complexity”. In: Journal of Computer and System Sciences 22.3 (1981)

	Slide: 1
	Background
	Interactive Proofs (IPs)? (1)
	Interactive Proofs (IPs)? (2)
	Interactive Proofs (IPs)? (3)
	Interactive Proofs (IPs)? (4)
	Interactive Proofs (IPs)? (5)
	Interactive Proofs (IPs)? (6)
	Goal (1)
	Goal (2)
	IPs for Deterministic Algorithms
	Why IPs for nondeterministic algorithms? (1)
	Why IPs for nondeterministic algorithms? (2)
	Why IPs for nondeterministic algorithms? (3)
	Why IPs for nondeterministic algorithms? (4)
	Why IPs for nondeterministic algorithms? (5)
	Why IPs for nondeterministic algorithms? (6)
	Results
	Result (1)
	Result (2)
	Generalization (1)
	Generalization (2)
	Techniques for Prior Results
	Computation Graph
	Adjacency Matrix For Deterministic Algorithms (1)
	Adjacency Matrix For Deterministic Algorithms (2)
	Adjacency Matrix For Deterministic Algorithms (3)
	Adjacency Matrix For Deterministic Algorithms (4)
	Nondeterministic Algorithm Matrix (1)
	Nondeterministic Algorithm Matrix (2)
	Nondeterministic Algorithm Matrix (3)
	Nondeterministic Algorithm Matrix (4)
	Boolean Formula for M(2) (1)
	Boolean Formula for M(2) (2)
	Boolean Formula for M(2) (3)
	Boolean Formula for M(2) (4)
	Reduction
	Degree Reduction
	Razborov Smolensky (1)
	Razborov Smolensky (2)
	Razborov Smolensky (3)
	Razborov Smolensky (4)
	Razborov Smolensky continued (1)
	Razborov Smolensky continued (2)
	Applying Razborov Smolensky (1)
	Applying Razborov Smolensky (2)
	Derandomization
	Derandomization Step 1, Epsilon Biased Sets (1)
	Derandomization Step 1, Epsilon Biased Sets (2)
	Derandomization Step 1, Epsilon Biased Sets (3)
	Derandomization Step 2, Random Walk Set Sampling (1)
	Derandomization Step 2, Random Walk Set Sampling (2)
	Derandomization Step 2, Random Walk Set Sampling (3)
	Main Reduction
	Final points
	Contrast with GR20
	Open Problems
	Citations

