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What is an Error Correcting code?

Definition (Error Correcting Code):

Function C: Σk→Σn such that for x ≠ y, we have

Pri[C(x)i≠C(y)i] ≥ 𝝳*.

Relative distance 𝝳*, rate r = k/n. Good if 𝝳*, r = 𝝮(1) and |Σ| = O(1).

The correcting radius is 𝝳 = 𝝳*/2.

Many, many applications,

some of which are in the small space regime.



𝝳

𝝳

What is decoding?

Given w close to C(x), 
output x.

C(x)
w

Promised that only 
one codeword is in 

radius 𝝳.

Think of w as 
C(x) with 

noise.

If w is within 𝝳 of 
C(x), we decode x.

Want to 
know x.



What is a low space decoder?

Input is read only. Output is write only. Have only no(1) working space.

In

Working

Can’t Change

Decoder

Decoder can 
only query!

Out

written

Can’t Read

Decoder can 
only write!

Small



Reed-Solomon Codes

Reed-Solomon codes: univariate low degree polynomials.

Example: message a = (a1,a2,a3), field of order 5.

Let fa(x) = a1 + a2x + a3x
2. Codeword is: [fa(0), fa(1), fa(2), fa(3), fa(4)].

Has known (almost) linear time (and space) decoders.

Examples: [0, 1, 2, 3, 4] is the codeword of (0, 1, 0), f(x) = x.

  [1, 2, 0, 0, 2] is the codeword of (1, 0, 1), f(x) = 1 + x2.



Reed-Muller Codes

Reed-Muller codes: codewords are multivariate low degree polynomials.

f(x,y) = a1 + a2x + a3x
2 + a4xy + a5y + a6y

2. 

f(0,0) f(1,0) f(2,0) f(3,0) f(4,0)

f(0,1) f(1,1) f(2,1) f(3,1) f(4,1)

f(0,2) f(1,2) f(2,2) f(3,2) f(4,2)

f(0,3) f(1,3) f(2,3) f(3,3) f(4,3)

f(0,4) f(1,4) f(2,4) f(3,4) f(4,4)
g(0)    

    g
(1)    

    g
(2)    

    g
(3)    

    g
(4)

f restricted to line is univariate. 
Example: g(x) = f(x,4-x)



Local Decoding

Correct a symbol with a small number of queries.

Take a random line through a point.

Reed-Muller
Green: Correct
Red: Corrupt

Works when line hits few corruptions.
Correct here

This line 
fails

This line works

Deterministic local correction? 

No.

Always checks the same few symbols, 
adversary corrupts those.



Locally Correctable Codes (LCC)

Definition (Locally Correctable Code (LCC)):
An LCC is a code C: Σk→Σn with a randomized algorithm D such that:

For any w ∈ Σn, x ∈ Σk where Pri[C(x)i ≠ wi] ≤ 𝝳’ and any i ∈ [n] we have

Pr[D(w, i) ≠ C(x)i] ≤ ⅓

D is q query if it only makes q queries to w. 𝝳’ is called the correcting radius.

Most codes we consider are systematic (the message 
is contained as plain text within the codeword), so 
local correctors are decoders.



Randomized Decoder Continued

Reed-Muller codes are locally correctable!

By repeating O(log(n)) times, the error probability drops below 1/n.

So it is unlikely any symbol is decoded incorrectly.

This gives a time and space efficient randomized decoder.

Local correction cannot be deterministic!

This decoder is non-adaptive (queries do not depend on the input).



Non-Adaptive, Deterministic Decoders Fail

Gronemeier: non-adaptive deterministic decoders can’t be sub-polynomial space 
and almost linear time.

Non-adaptive means read and write locations are independent of the input.

Idea: for space S, wait for an interval where the decoder outputs S+1 symbols and 
only reads o(n) input symbols.

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r w r r r r r r w r r w r w r w r r ww r r r w r r w r w r w r r ww r r r r r r w r r r r r w r r ww r r r w

Always reads 
same bit

r r r r r r

Memory

w w w w w

and this one

w

But not 
this one! 

Remember 
this one



First Result: Efficient (Non-Uniform) Deterministic Decoders

Theorem (Deterministic Decoder for LCC):
Good, typical* q = n⍺ query LCCs have non-uniform, deterministic 
decoders running in space O(q log(n)2) and time n1+O(√⍺).

*(typical means systematic, non-adaptive, and with perfect completeness).

For q = no(1): space is no(1) and time n1+o(1).

Gronemeier proved non-adaptive decoders for good 
codes required time T and space S such that ST = 𝛀(n2).



A flawed approach

Find a (single) q query f such that 

Pri,j[C(x)i ≠ fj(w)i] ≤ 𝜂 Pri[C(x)i ≠ wi]

f reduces corruptions by an 𝜂 fraction.

Good Corruption

f

f

f

f

Correct here

Input

Codeword
Tradeoff between q and 𝜂.

Need both q and 𝜂 small.



w

How good can a single, deterministic f be?

If f makes q queries, and we can corrupt 𝝳 fraction of symbols.

f(w)

w𝝳

q

𝝳/q f(w)

For deterministic f, only get 𝜂 = 1/q



Why doesn’t it work?

Deterministic, q query f only 
reduces 𝝳 corruptions to 𝝳/q.

Good Corruption
Inputqueries

d ≥ 𝛀(n)
q

d/q
q2

d/q2

q3

d/q3

Corruption

q4≥𝛀(d)
d/q4

 < 1

To get zero errors, we would 
need 𝝳n queries (per symbol)!

This gives a total time of 𝝳n2.



Fix: More than one function
What about m different q query functions f1, …, fm?

Now the O(𝝳 / q) failures are distributed among m functions.

Less than O(𝝳 / m) on average.

Don’t have to pay for m in the recursion, so can make m ≫ q!

Definition (Improving Set):

f1, …, fm is a below 𝝳, factor 𝜂 improving set if for 
any w and C(x) with Pri[C(x)i ≠ wi] ≤ 𝝳 we have

Pri,j[C(x)i ≠ fj(w)i] ≤ 𝜂 Pri[C(x)i ≠ wi]



Example
Try all f1, .., fm.

Good Corruption

f3

f1

f5

f1

Keep going until error is zero.

Still recursive, but fewer 

levels if q ≪ m.

f1f2

f2

queries

q

q2

q3

q4≪n

Corruption
d ≥ 𝛀(n)

d/m

d/m2

d/m3

d/m4<1



Can We Find such an Improving Set?

Yes, (for typical LCC).

For any q query LCC and 𝜂, there is a O(qlog(n)) query improving set with size

m = O(log(n)2/𝜂).

If q = no(1), then setting 𝜂 appropriately gives space no(1) time n1+o(1).



Uniform Decoding for Reed-Muller



Second Result: Efficient Uniform Decoders

Theorem (Deterministic, Uniform Decoders):
There is a good code with a uniform, deterministic decoder running in 
space no(1) and time n1+o(1).

The code is based on Lifted Reed-Solomon codes.

Also applies to the specific case of Reed-Muller codes.



Samplers

A

Family of subsets of N, 𝒮.

We say 𝒮 is a sampler if:

For all sets A (let 𝜇 = |A|/|N|).

The probability S ∈ 𝒮 
oversamples A is low.

Definition (Sampler): 𝒮 = (S1,...Sk) where Si ⊆ N 
is a sampler if for some accuracy error 𝜀 > 0 and strong 
confidence error 𝛿, for all A ⊆ N, and 𝜇=|A|/|N| we have

Pri[
|Si∩A|/|Si| ≥ 𝜇 + 𝜀 ] ≤ 𝛿𝜇.



Curve Samplers

Need samplers with special structure to allow decoding.

● Lines (Line samplers).
● Subspaces (Space Samplers).
● Curves (Curve Samplers).

Prior curve samplers by Ta-Shma and Umans (and later by Guo) exist, but they:

● Had too many samples, more than n4, while we need n1+o(1).
● Only proved a weaker notion of confidence error.



Line Samplers
A sampler whose samples are lines.

Most points (even corrupted 
points), most lines through that 

point don’t oversample A.

Some points still won’t be 
corrected, but few of these



How good are line samplers?

For q queries, the probability they oversample is about 𝜂 ≅ 1/q.

Comes from pairwise independence.

NOT GOOD ENOUGH! Need 𝜂 << 1/q.

This is the best lines (or subspaces) can do!

Solutions?

Use curves (works, but gives much worse rate).

Use several lines through a point 

(extends to lifted Reed-Solomon codes).



Third Result: New Curve Samplers

Theorem (Curve Sampler):
For appropriate degree t, dimension d, and any 𝜀 > 0 there is a 
degree t-curve sampler for 𝔽d of size n |𝔽|poly(t) with accuracy 
error 𝜀 and strong confidence error:

𝛿 = Ot(1/(𝜀|𝔽|)ꭥ(t))

The number of samples is close to n = |𝔽|d when t ≪ d.

The number of queries is q = |𝔽|.

For large t, confidence error is less than 1/q.



Sampler 
Construction
First sample a subspace.

Sub-sample with curves.

Since subspace is small, use all low degree 
curves as a sampler.

Or a sample a few lines through a point in 
that subspace.

Choose one curve.

Choose a few lines.

Do low degree correction on that curve.

Correct on each line and take a majority.

Epsilon biased sets in extension field. Gives a line 
sampler, which is a subspace sampler over original field.



Some Technical Notes



Subspace Samplers

Subspace samplers come from line samplers in extension fields.

Line samplers through 𝜀-biased sets.

𝜀-biased sets (Jalan, Moshkovitz using techniques from Ta-Shma).

Lines through extension field are subspaces of base field.

Prior curve samplers also use extension fields (Ta-Shma and Umans).

Uses curves, not lines over extension field.

           Doesn’t let us subsample lines (needed for good rate).

    Not as randomness efficient (ꭥ(n2) samples).



Getting Better Rate with Fewer Queries.

Reed-Muller gives bad rate for few queries.

Use a closely related code called Lifted Reed-Solomon.

Low degree only when restricted to lines.

Can’t use curve samplers, we use samplers with many lines.

For high degree and low characteristic, more general than Reed-Muller.

Lifted Reed-Solomon with high rate (and few queries) has low distance.

Use distance amplification: Kopparty, Saraf, and Yekhanin.



Open Problems

1. Find a single code that is encodable and decodable in space no(1), time n1+o(1).

2. Extend to list decoding.
a. Already did this in a follow up work for Reed-Muller codes.

i. Constants are huge, 1020. Give better constants.

b. Doesn’t have constant rate when achieving space no(1), time n1+o(1).

3. Give time/space efficient uniform decoders for more codes (like multiplicity codes).

a. Only gave non-uniform decoders for multiplicity codes. 

4. Find a deterministic decoder running in 
space polylog(n) and time n polylog(n).



Thanks for Listening


