Time and Space Efficient Deterministic Decoders

Joshua Cook, Dana Moshkovitz The University of Texas at Austin

What is an Error Correcting code?

Definition (Error Correcting Code):

Function C: $\Sigma^k \rightarrow \Sigma^n$ such that for $x \neq y$, we have

 $\Pr_{i}[C(x)_{i}\neq C(y)_{i}] \geq \boldsymbol{\delta}^{*}.$

Relative distance $\boldsymbol{\delta}^*$, rate r = k/n. Good if $\boldsymbol{\delta}^*$, r = $\boldsymbol{\Omega}(1)$ and $|\boldsymbol{\Sigma}| = O(1)$.

The correcting radius is $\boldsymbol{\delta} = \boldsymbol{\delta}^*/2$.

Many, many applications,

some of which are in the small space regime.

What is a low space decoder?

Input is read only. Output is write only. Have only n^{o(1)} working space.

Reed-Solomon Codes

Reed-Solomon codes: univariate low degree polynomials.

Example: message $a = (a_1, a_2, a_3)$, field of order 5. Let $f_a(x) = a_1 + a_2 x + a_3 x^2$. Codeword is: $[f_a(0), f_a(1), f_a(2), f_a(3), f_a(4)]$. Has known (almost) linear time (and space) decoders.

Examples: [0, 1, 2, 3, 4] is the codeword of (0, 1, 0), f(x) = x. [1, 2, 0, 0, 2] is the codeword of (1, 0, 1), $f(x) = 1 + x^2$.

Reed-Muller Codes

Reed-Muller codes: codewords are multivariate low degree polynomials.

$$f(x,y) = a_1 + a_2 x + a_3 x^2 + a_4 xy + a_5 y + a_6 y^2.$$

$$f(0,0) \quad f(1,0) \quad f(2,0) \quad f(3,0) \quad g(A)$$

$$f(0,1) \quad f(1,1) \quad f(2,1) \quad g(3) \quad f(4,1)$$

$$f(0,2) \quad f(1,2) \quad g(2) \quad f(3,2) \quad f(4,2)$$

$$f(0,3) \quad f(1,2) \quad g(2) \quad f(3,3) \quad f(4,3)$$

$$f(0,3) \quad f(1,4) \quad f(2,4) \quad f(3,4) \quad f(4,4)$$

Local Decoding

Correct a symbol with a small number of queries.

Take a random line through a point.

Works when line hits few corruptions.

Deterministic local correction?

No.

Always checks the same few symbols, adversary corrupts those.

Red: Corrupt This line works Correct here This line fails

Reed-Muller

Green: Correct

Locally Correctable Codes (LCC)

Definition (Locally Correctable Code (LCC)):

An LCC is a code C: $\Sigma^k \rightarrow \Sigma^n$ with a randomized algorithm D such that:

For any $w \in \Sigma^n$, $x \in \Sigma^k$ where $\Pr_i[C(x)_i \neq w_i] \leq \delta$ and any $i \in [n]$ we have

 $\Pr[D(w, i) \neq C(x)_i] \leq \frac{1}{3}$

D is q query if it only makes q queries to w. δ ' is called the correcting radius.

Most codes we consider are systematic (the message is contained as plain text within the codeword), so local correctors are decoders.

Randomized Decoder Continued

Reed-Muller codes are locally correctable!

By repeating $O(\log(n))$ times, the error probability drops below 1/n.

So it is unlikely any symbol is decoded incorrectly.

This gives a time and space efficient randomized decoder.

Local correction cannot be **deterministic**!

This decoder is **non-adaptive** (queries do not depend on the input).

Non-Adaptive, Deterministic Decoders Fail

Gronemeier: non-adaptive deterministic decoders can't be sub-polynomial space and almost linear time.

Non-adaptive means read and write locations are independent of the input.

Idea: for space S, wait for an interval where the decoder outputs S+1 symbols and only reads o(n) input symbols.

First Result: Efficient (Non-Uniform) Deterministic Decoders

Theorem (Deterministic Decoder for LCC):

Good, typical^{*} q = n^{α} query LCCs have **non-uniform**, *deterministic* decoders running in space O(q log(n)²) and time n^{1+O($\sqrt{\alpha}$)}.

*(typical means systematic, non-adaptive, and with perfect completeness).

For $q = n^{o(1)}$: space is $n^{o(1)}$ and time $n^{1+o(1)}$.

Gronemeier proved non-adaptive decoders for good codes required time T and space S such that $ST = \Omega(n^2)$.

A flawed approach

Find a (single) q query f such that

 $\Pr_{i,i}[C(x)_{i} \neq f_{i}(w)_{i}] \leq \eta \Pr_{i}[C(x)_{i} \neq w_{i}]$

f reduces corruptions by an η fraction.

Good Corruption Codeword Correct here

Input

Tradeoff between q and η .

Need both q and η small.

How good can a single, deterministic f be?

If f makes q queries, and we can corrupt $\boldsymbol{\delta}$ fraction of symbols.

For deterministic f, only get $\eta = 1/q$

Why doesn't it work?

Deterministic, q query f only reduces $\boldsymbol{\delta}$ corruptions to $\boldsymbol{\delta}/q$.

To get zero errors, we would need **δ**n queries (per symbol)!

This gives a total time of δn^2 .

Fix: More than one function

What about m different q query functions $f_1, ..., f_m$?

Now the $O(\delta / q)$ failures are distributed among m functions.

Less than $O(\delta / m)$ on average.

Don't have to pay for m in the recursion, so can make $m \gg q!$

Definition (Improving Set):

 $f_1, ..., f_m$ is a below $\boldsymbol{\delta}$, factor η improving set if for any w and C(x) with $Pr_i[C(x)_i \neq w_i] \leq \boldsymbol{\delta}$ we have

 $\Pr_{i,i}[C(x)_{i} \neq f_{i}(w)_{i}] \leq \eta \Pr_{i}[C(x)_{i} \neq w_{i}]$

Still recursive, but fewer levels if q \ll m.

Can We Find such an Improving Set?

Yes, (for typical LCC).

For any q query LCC and η , there is a O(qlog(n)) query improving set with size

 $m = O(\log(n)^2/\eta).$

If q = n^{o(1)}, then setting η appropriately gives space n^{o(1)} time n^{1+o(1)}.

Uniform Decoding for Reed-Muller

Second Result: Efficient Uniform Decoders

Theorem (Deterministic, Uniform Decoders):

There is a good code with a **uniform**, deterministic decoder running in space $n^{o(1)}$ and time $n^{1+o(1)}$.

The code is based on Lifted Reed-Solomon codes.

Also applies to the specific case of Reed-Muller codes.

Samplers

Family of subsets of N, S.

We say \mathscr{S} is a sampler if:

For all sets A (let $\mu = |A|/|N|$).

The probability $S \in \mathscr{S}$ oversamples A is low.

Definition (Sampler): $\mathscr{S} = (S_1, ..., S_k)$ where $S_i \subseteq N$ is a sampler if for some accuracy error $\varepsilon > 0$ and strong confidence error δ , for all $A \subseteq N$, and $\mu = |A|/|N|$ we have

 $\mathsf{Pr}_{\mathsf{i}}[|\mathsf{S}_{\mathsf{i}} \cap \mathsf{A}| / |\mathsf{S}_{\mathsf{i}}| \geq \mu + \varepsilon] \leq \delta \mu.$

Curve Samplers

Need samplers with special structure to allow decoding.

- Lines (Line samplers).
- Subspaces (Space Samplers).
- Curves (Curve Samplers).

Prior curve samplers by Ta-Shma and Umans (and later by Guo) exist, but they:

- Had too many samples, more than n^4 , while we need $n^{1+o(1)}$.
- Only proved a weaker notion of confidence error.

How good are line samplers?

For q queries, the probability they oversample is about $\eta \cong 1/q$.

Comes from pairwise independence.

NOT GOOD ENOUGH! Need $\eta \ll 1/q$.

This is the best lines (or subspaces) can do!

Solutions?

Use curves (works, but gives much worse rate).

Use several lines through a point

(extends to lifted Reed-Solomon codes).

Third Result: New Curve Samplers

Theorem (Curve Sampler):

For appropriate degree t, dimension d, and any $\varepsilon > 0$ there is a degree t-curve sampler for \mathbb{F}^d of size n $|\mathbb{F}|^{\text{poly}(t)}$ with accuracy error ε and strong confidence error:

 $\delta = O_t(1/(\varepsilon |\mathbb{F}|)^{\Box(t)})$

The number of samples is close to $n = |\mathbb{F}|^d$ when $t \ll d$.

```
The number of queries is q = |\mathbb{F}|.
```

For large t, confidence error is less than 1/q.

Sampler Construction

First sample a subspace.

Epsilon biased sets in extension field. Gives a line sampler, which is a subspace sampler over original field.

Sub-sample with curves.

Since subspace is small, use all low degree curves as a sampler.

Choose one curve.

Do low degree correction on that curve.

Or a sample a few lines through a point in that subspace.

Choose a few lines.

Correct on each line and take a majority.

Some Technical Notes

Subspace Samplers

Subspace samplers come from line samplers in extension fields.

Line samplers through ε -biased sets.

 ε -biased sets (Jalan, Moshkovitz using techniques from Ta-Shma).

Lines through extension field are subspaces of base field.

Prior curve samplers also use extension fields (Ta-Shma and Umans).

Uses curves, not lines over extension field.

Doesn't let us subsample lines (needed for good rate).

Not as randomness efficient (\Box (n²) samples).

Getting Better Rate with Fewer Queries.

Reed-Muller gives bad rate for few queries.

Use a closely related code called Lifted Reed-Solomon.

Low degree only when restricted to lines.

Can't use curve samplers, we use samplers with many lines.

For high degree and low characteristic, more general than Reed-Muller.

Lifted Reed-Solomon with high rate (and few queries) has low distance.

Use distance amplification: Kopparty, Saraf, and Yekhanin.

Open Problems

- 1. Find a single code that is encodable and decodable in space $n^{o(1)}$, time $n^{1+o(1)}$.
- 2. Extend to list decoding.
 - a. Already did this in a follow up work *for Reed-Muller* codes.
 - i. Constants are huge, 10²⁰. Give better constants.
 - b. Doesn't have constant rate when achieving space $n^{o(1)}$, time $n^{1+o(1)}$.
- 3. Give time/space efficient **uniform** decoders for more codes (like multiplicity codes).
 - a. Only gave non-uniform decoders for multiplicity codes.
- 4. Find a deterministic decoder running in space polylog(n) and time n polylog(n).

Thanks for Listening