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What is an Error Correcting code?

Definition:

Function C: Σk→Σn such that for x ≠ y, we have

Pri[C(x)i≠C(y)i] ≥ 𝝳*.

Relative distance 𝝳*, rate r = k/n. Good if 𝝳*, r = 𝝮(1) and |Σ| = O(1).

The correcting radius is 𝝳 = 𝝳*/2.

Many, many applications,

some of which are in the small space regime.



𝝳

𝝳

What is decoding?

Given w close to C(x), 
output x.

C(x)
w

Promised that only 
one codeword is in 

radius 𝝳.

Think of w as 
C(x) with 

noise.

If w is within 𝝳 of 
C(x), we decode x.

Want to 
know x.



What is a low space decoder?

Input is read only. Output is write only. Have only no(1) working space.

In

Working

Can’t Change

Decoder

Decoder can 
only query!

Out

written

Can’t Read

Decoder can 
only write!

Small



Local Decoding

Can we correct a single symbol only looking at a small number of symbols?

Randomly? Yes.

For Reed Muller, take a random line through a point.

Reed-Muller
Green: Correct
Red: Corrupt

If it rarely hits corruption, local 
correction succeeds. Correct here

This line 
fails

This line worksDeterministically? No.

Always checks the same few 
symbols, adversary corrupts those.



Locally Correctable Codes (LCC)

Definition:
An LCC is a code C: Σk→Σn with a randomized algorithm D such that:

For any w ∈ Σn, x ∈ Σk where Pri[C(x)i ≠ wi] ≤ 𝝳’ and any i ∈ [n] we have

Pr[D(w, i) ≠ C(x)i] ≤ ⅓

D is q query if it only makes q queries to w. 𝝳’ is called the correcting radius.

Most codes we consider are systematic (the message is contained as plain text 

within the codeword), so local correctors are decoders.



Randomized Decoder Continued

Reed-Muller codes are locally correctable!

By repeating O(log(n)) times, the error probability drops below 1/n.

So it is unlikely any symbol is decoded incorrectly.

This gives us a time and space efficient randomized decoder.

Local correction cannot be deterministic (and always correct)!

This decoder is non-adaptive (queries do not depend on the input).



First Result: Efficient (Non-Uniform) Deterministic Decoders

Theorem (Deterministic Decoder for LCC):
Good, typical* q = n⍺ query LCCs have non-uniform, deterministic 
decoders running in space O(q log(n)2) and time n1+O(√⍺).

*(typical means systematic, non-adaptive, and with perfect completeness).

For q = no(1): space is no(1) and time n1+o(1).

A prior result by Gronemeier proved non-adaptive decoders for good codes 
required time T and space S such that ST = 𝛀(n2).



A flawed approach

Find a (single) q query f such that 

Pri,j[C(x)i ≠ fj(w)i] ≤ 𝜂 Pri[C(x)i ≠ wi]

f reduces the fraction of corruptions by 𝜂.

Good Corruption

f

f

f

f

Correct here

Input

Codeword

Tradeoff between q and 𝜂.

Need both q and 𝜂 small.



w

How good can a single, deterministic f be?

If f makes q queries, and we can corrupt 𝝳 fraction of symbols.

f(w)

w𝝳

q

𝝳/q f(w)

For deterministic f, only get 𝜂 = 1/q



Why doesn’t it work?

Deterministic, q query f only 
reduces 𝝳 corruptions to 𝝳/q.

Good Corruption

Inputqueries
d ≥ 𝛀(n)

q
d/q

q2

d/q2

q3

d/q3

Corruption

q4≥𝛀(d)
d/q4

 < 1

To get zero errors, we would 
need 𝝳n queries (per symbol)!

This gives a total time of 𝝳n2.



Fix: More than one function
What about m different q query functions f1, …, fm?

Now the O(𝝳/q) failures are distributed among m functions.

Less than O(𝝳 / m) on average.

Don’t have to pay for m in the recursion, so can make m ≫ q!

Definition:

f1, …, fm is a below 𝝳, factor 𝜂 improving set if for any w and C(x) with 
Pri[C(x)i ≠ wi] ≤ 𝝳 we have

Pri,j[C(x)i ≠ fj(w)i] ≤ 𝜂 Pri[C(x)i ≠ wi]



Example
Try all f1, .., fm.

Good Corruption

f3

f1

f5

f1

Keep going until error is zero.

Still recursive, but fewer 

levels if q ≪ m.

f1f2

f2

queries

q

q2

q3

q4≪n

Corruption

d ≥ 𝛀(n)

d/m

d/m2

d/m3

d/m4<1



Can We Find such an Improving Set?

Yes, (for typical LCC).

For any q query LCC and 𝜂, there is a q query improving set with size

m = O(log(n)2/𝜂).

If q = no(1), then setting 𝜂 appropriately gives space no(1) time:

n1+o(1).



Uniform Decoding for Reed-Muller



Second Result: Efficient Uniform Decoders

Theorem (Deterministic, Uniform Decoders):
There is a good code with a uniform, deterministic decoder running in 
space no(1) and time n1+o(1).

The code is based on Lifted Reed-Solomon codes.

Also applies to the special case of Reed-Muller codes.



Samplers

A

Family of subsets of N, 𝒮.

We say 𝒮 is a sampler if:

For all sets A (let 𝜇 = |A|/|N|).

The probability S ∈ 𝒮 
oversamples A is low.

Definition: We say 𝒮 = (S1,S2,...Sk) where each Si ⊆ N is a sampler for 
N if for some accuracy error 𝜀 > 0 and strong confidence error 𝛿, for all A ⊆ 
N, and 𝜇=|A|/|N| we have

Pri[
|Si∩A|/|Si| ≥ 𝜇 + 𝜀 ] ≤ 𝛿𝜇.



Curve Samplers

Need samplers with special structure to allow decoding.

● Lines (Line samplers)
● Subspaces (Space Samplers).
● Curves (Curve Samplers).

Prior curve samplers by Ta-Shma and Umans (and later by Guo) exist, but they:

● Had too many samplers, more than n4, while we need n1+o(1).
● Only proved a weaker notion of confidence error.



Third Result: New Curve Samplers

Theorem (Curve Sampler):
For appropriate degree t, dimension d, and any 𝜀 > 0 there is a 
degree t-curve sampler for 𝔽d of size n |𝔽|poly(t) with accuracy 
error 𝜀 and strong confidence error:

𝛿 = Ot(1/(𝜀|𝔽|)ꭥ(t))

The number of samples is close to n = |𝔽|d when t ≪ d.

The number of queries is q = |𝔽|.

For large t, confidence error is less than 1/q.



Open Problems

1. Find a single code that is encodable and decodable in space no(1), time n1+o(1).

2. Extend to list decoding.
a. Already did this in a follow up work for Reed-Muller codes.

i. Constants are huge, 1020. Give better constants.

b. Doesn’t have constant rate when achieving space no(1), time n1+o(1).

3. Give time/space efficient uniform decoders for more codes (like multiplicity codes).

a. Our uniform decoders are only for lifted Reed-Solomon.

b. Our technique for multiplicity codes only gives non-uniform decoders.

4. Find a deterministic decoder running in space polylog(n) and time npolylog(n).



Any Questions?



Extra Technical Details



Getting Better Rate with Fewer Queries.

Reed-Muller gives bad rate for few queries.

Use a closely related code called Lifted Reed-Solomon.

Low degree only when restricted to lines.

For high degree and low characteristic, more general than Reed-Muller.

Lifted Reed-Solomon with high rate (and few queries) has low distance.

Use similar distance amplification technique as Kopparty, Saraf, and Yekhanin.



Why not Multiplicity codes?

Multiplicity codes need pseudorandom lines, like ours.

But multiplicity needs lines in directions that spans the space.

Otherwise some directional derivatives cannot be recovered.

Our first sampling step restricts us to a subspace:

Can’t get derivatives outside that subspace.

Similar sampler may work, but the samples need more structure than just being 
lines (a single line is not sufficient for correcting even a single symbol).

However, our techniques give a non-uniform decoder.



Selecting fj from Improving Set

Ideally for every i compare C(x)i to fj(w)i to see how good fj is.

Don’t have access to C(x), but

In expectation a random fk(w) is close to C(x).

Choose the fj such that fj(w) agrees with the most fk(w) at the most indexes.



Runtime of Algorithm

Selecting a function takes O(q m2 n) queries to the level before it.

A query to level L takes qL queries.

Final decoder only requires space q L and time

O(n m2qL).

As long as 𝜂 ≪1/q, qL will be small (if 𝜂 = q-a then qL = n1/a).



Non Adaptive, Deterministic Decoders Fail

Gronemeier proved that a non-adaptive decoder deterministic decoder fails.

Non-adaptive means when and where the decoder reads and when it writes are 
independent of the input.

Idea: for space S, wait for an interval where the decoder outputs S+1 symbols and 
only reads o(n) input symbols.

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r w r r r r r r w r r w r w r w r r ww r r r w r r w r w r w r r ww r r r r r r w r r r r r w r r ww r r r w

Always reads 
same bit

r r r r r r

Memory
Remember 

this one

w w w w w

and this one

w

But not 
this one! 



Decoding Expander Codes in Linear Time

Standard approaches to linear time decoding often require storing partially 
corrected codeword in memory and making iterative corrections.

1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 001 1

Input (near a 
codeword)

Slowly modify codeword to 
satisfy more constraints

Constraints

Storing all corrections takes 
too much space!



Sampler 
Construction
First sample a subspace.

Sub-sample with curves.

Since subspace is small, use all low degree 
curves as a sampler.

Or a sample a few lines through a point in 
that subspace.

Choose one curve.

Choose a few lines.

Do low degree correction on that curve.

Correct on each line and take a majority.

Epsilon biased sets in extension field. Gives a line 
sampler, which is a subspace sampler over original field.



Making Our Sampler

Constructed subspace an epsilon biased set for extension field.

Gives line samplers for extension field.

Lines in extension field are subspaces in base fields.

To sample the lines through a point, we use the lines that intersect a random, low 
degree curve.


