
Explicit Time and Space
Efficient Encoders Exist

Only With Random Access
Joshua Cook and Dana Moshkovitz

What is an Error Correcting Code (Notation)

A function C: {0,1}n → {0,1}m is a code with distance d if

For all x, y ∈ {0,1}n with x ≠ y we have ∑i[C(x)i ≠ C(y)i] ≥ d

We call

● 𝛿 = d / m the relative distance of C
● r = n / m the rate of C
● C good (or asymptotically good) if 𝛿 and r are constants greater than zero
● any algorithm computing C an encoder for C

Time T And Space S Required for Encoders
of Good Codes

with random access to the input

Do Good Codes Require Encoders with S T = Ω(n2)?

Conjectured by Bazzi and Mitter [Bazzi, Mitter 2005]

Bazzi and Mitter showed time O(n) encoders required space Ω(n)

No!

Some Non-Explicit Good Codes have T = O(n log(n)) and S = O(log(n)) encoders

● Repeat Accumulate Codes [Divsalar, Jin, McEliece, 1998]
○ With random puncturing

● Depth 2 Parity Circuits of [G´al, Hansen, Kouck´y, Pudl´ak, and Viola, 2012]
○ Partially derandomized result
○ T = O(n log(n)2)

Explicit Codes With Time and Space Efficient Encoders

We give explicit good codes encodable

● By a uniform encoder running in time T = n1+o(1) and space S = O(log(n)2)
● By an explicit depth 2 parity circuit with size n1+o(1)

○ Can be viewed as derandomization of circuits in [GHKPV, 2012]

These two statements seem incomparable

Our codes have constant distance arbitrarily close to 1

Our space efficient encoders are non-adaptive, and require random access to the
input

Time T And Space S Required for Encoders
of Good Codes

with sequential access to the input

What is “sequential access” to the input?

Stronger than streaming

● Multiple heads
● Can only move one head one space at a time

Can recognize palindromes efficiently

● Can jump heads to location of other heads
● Algorithm chooses which head to move

(forward or backward)

Why Sequential Access?

Model for access to the output of low space algorithms

Problem:

● Suppose low space algorithm A on input x outputs an O(n) bit message: A(x)
● Suppose we want to encode A(x) in code C to get C(A(x))

Solution Attempts:

● Run encoder for C, simulate A to get A(x)i when C asks for bit i
○ Small space, but slow, at least quadratic time

● Instead of simulating A from the start, store intermediate states of A
○ These are like heads in sequential access

Do Encoders (with sequential access) Require S T = Ω(n2)?

Any good code with an encoder that runs in time T and space S with h heads has

hST = Ω(n2).

● This bound is tight (up to polylog(n) factors)
○ Uses a tensor code of time and space efficiently encodable codes for random access.

● If h ~ S, then S2T = Ω(n2)
○ So almost linear time requires sqrt(n) space.
○ Not as good as random access, better than Bazzi and Mitter conjectured.

A similar result was shown for weaker streaming algorithms (h = 1) by Bangalore,
Bhadauria, Hazay and Venkitasubramaniam [BBHV, 2022]

No! (for h = ⍵(polylog(n)))

Encoder Approach

Distance of Codes as Weight

The weight of a string y ∈ {0,1}m is the number of ones in y:

wt(y) = ∑i∈[m] yi

For any code C: {0,1}n → {0,1}m that is a linear function, the distance of C is

d = minx≠0 wt(C(x))

So we only need to show that for all x where wt(x) > 0, we have wt(C(x)) ≥ d

Suppose we knew the weight of x

Construct a linear function that maps an input in weight range [k, 2k] to a constant
relative weight 𝛿. Call this a [k, 2k] to 𝛿 weight fixer.

Try all ranges
One output will have relative weight
𝛿.

A small interval may have large
relative weight, so can’t just output
this.

log(n)

n

We want
this one!

Try all ranges
log(n)

n

𝛿 fraction in
this column

though!

One output will have relative weight
𝛿.

A small interval may have large
relative weight, so can’t just output
this.

Stretch all intervals to same length
by repeating them.

Only has relative weight 𝛿 / log(n).

Try all ranges
One output will have relative weight
𝛿.

A small interval may have large
relative weight, so can’t just output
this.

Stretch all intervals to same length
by repeating them.

Only has relative weight 𝛿 / log(n).

Apply code with distance 𝛿’

log(n)

n

Rows with weight
zero stay zero

Rows with any
non-zero have

weight 𝛿’

Final weight: 𝛿’ 𝛿

𝛿’

𝛿

Weight Fixers from Condensers

Weight fixers from condensers

Same approach used in [G´al, Hansen, Kouck´y, Pudl´ak, and Viola, 2012], but
they could not construct weight fixers explicitly

We make weight fixers using lossless condensers,

AKA, bipartite lossless expanders

What is a bipartite
expander?

A graph such that:

Any sufficiently small subset
on the left hand side

has a larger neighborhood
on the right hand side.

Lossless if neighborhood is near
D times the size of left set.

k (1-𝜀)Dk

D

Let D be the degree of the left
hand side.

Weight Fixers From
Bipartite Expanders

Identify message with left
vertices, Identify output
with right vertices.

1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

1
1
1
1

Message

Output

Relative
Weight

1/10

Relative
weight

1/3

0
0

Output bit is parity of
adjacent input bits

Output bit is one if a unique
neighbor is one.

Weight Fixers From
Lossless Expanders

If appropriate sized
left hand size has
many, many
neighbors (it
expands losslessly),
then most neighbors
are unique.

Left hand degree D

(1-𝜀)Dk

Dk

(1-2𝜀)Dk

𝜀Dk

𝜀Dk

Weight Fixers From
Lossless Condensers

To be efficient, need small D

D Time > n D

n
m

m < kD(1-2𝜀) / 𝛿

k

kD(1-2𝜀)
This is what lossless condenser
does: it condenses to a smaller
space with few collisions.

To get large relative weight,
we need small m

But that means number of
ones doesn’t increase much

Efficiently Invertible
Condensers

Generally think of condensers
as a function from left hand
side to right hand side.

x y
i

Cond(x ,i) = y

But to be space efficient,
need to map from right to left

j

Cond-1(y, j) = (x, i)
That is, the condenser
needs to be efficient to invert

Constructing Our Lossless Condensers

Alternative View of
Condensers

Functions that reduce
number of bits in a source
of entropy, without
reducing entropy much.

Source Entropy

EntropyUse condense and
extract framework to get
really good condensers

Conventional
Condense And
Extract

Start by condensing

Source

Extract to further concentrate

Some entropy remains, condense it

Extract to further concentrate

Some entropy remains, condense it

End after condense and it is a condenser

…

Modified to Buffered
Extractors

Issue: hard to invert two
functions on the same
input at same time.

Solution: easy to invert
two functions composed.

Make extractor output
buffer, condense from
buffer instead.

Source

Condense

Extract

Condense

Extract

Condense

Constructing our Lossless Condensers

● Start with multiplicity based condensers [Kalev and Ta-Shma, 2022]
○ Not good enough

● Use a condense and extract framework [Ta-Shma, Umans, Zuckerman,
2001], [Guruswami, Umans, and Vadhan, 07]

● Use Trevisan extractor and extractor from left over hash lemma.
● Change extractors to buffered extractor and compose with the buffer

○ Similar to the lossless expanders of [Capalbo, Reingold, Vadhan, and Wigderson, 2002]

Handling large weight

Problem: Condensers give too large outputs for input weight n / polylog(n)

Solution: Use many expanders, each increasing relative weight and decreasing
size a constant factor, similar to Spielman codes [Spielman, 1995]

Why not just use this?

Time increases faster than relative
weight, leads to super linear time.

Fine for few iterations.

Lower Bounds For Sequential Access

Arrange input into blocks larger than S

Idea: separate input into blocks larger than S

2 player game

● Player one sees block
● Player two outputs code most bits of the code
● Player one passes S bits when all heads leave block

If after k rounds not enough information is given, player 2 must do same thing for
two settings of block. Thus code has small distance.

???

S S S

Lower Bound Idea

Separate input into blocks greater than S

● If block is visited few times, code can’t have good distance for that block
○ While no head is in that block,
○ Which is most blocks most of the time.

● Visiting new blocks takes a long time
○ Most blocks are visited few times
○ Excluding blocks a head was just in.

Need to
go here!

Code must have small distance!

Open Problems

Time and Space Efficient Decoding?

● Is there a code that can be decoded in time n1+o(1) and space no(1)?

○ Yes, random decoders for locally correctable codes [Kopparty, Meir, Ron-Zewi, and Saraf, 2016]

○ Yes, deterministic decoders for locally correctable codes [Cook, Moshkovitz, 2024]

● Time and space efficient encoding and decoding on the same code?

○ Time n1+o(1) and space n1/2 + o(1), achieved with tensor code.

○ Time n1+o(1) and space no(1) is still open!

Other

● Improved Encoding Time, our time is n 2O(log(log(n)))

○ Getting quasilinear time with this method requires explicit extractors with seed length O(log(n))
that extract all but constantly many bits of entropy.

■ This is still open, our state of the art extractors have seed length O(log(n)2)
● Determine what code properties require S T = Ω(n2)

○ It is known that self dual codes do [Santhi and Vardy, 2006]
○ What about locally testable codes?
○ What about locally correctable codes?
○ etc.

● Derandomize Repeat Accumulate codes
○ As a corollary of Gal et al, our encoding technique cannot get time o(n (log(n) / loglog(n))2)
○ Repeat accumulate codes, non-explicitly, achieve time O(n log(n)) and space O(log(n)).

3

Thanks for listening

Also, I wrote a picture book about binary search.

And I’m graduating soon.

 https://stemforestbooks.com/leafslibrary.html

https://stemforestbooks.com/leafslibrary.html

